![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.37v | Structured version Visualization version Unicode version |
Description: Restricted quantifier
version of one direction of 19.37v 1836. (The other
direction holds iff ![]() |
Ref | Expression |
---|---|
r19.37v |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfv 1771 |
. 2
![]() ![]() ![]() ![]() | |
2 | 1 | r19.37 2950 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1679 ax-4 1692 ax-5 1768 ax-6 1815 ax-7 1861 ax-12 1943 |
This theorem depends on definitions: df-bi 190 df-an 377 df-ex 1674 df-nf 1678 df-ral 2753 df-rex 2754 |
This theorem is referenced by: ssiun 4333 isucn2 21342 |
Copyright terms: Public domain | W3C validator |