MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.36av Structured version   Unicode version

Theorem r19.36av 3004
Description: One direction of a restricted quantifier version of Theorem 19.36 of [Margaris] p. 90. The other direction doesn't hold when  A is empty. (Contributed by NM, 22-Oct-2003.)
Assertion
Ref Expression
r19.36av  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Distinct variable group:    ps, x
Allowed substitution hints:    ph( x)    A( x)

Proof of Theorem r19.36av
StepHypRef Expression
1 r19.35 3003 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
2 idd 24 . . . 4  |-  ( x  e.  A  ->  ( ps  ->  ps ) )
32rexlimiv 2944 . . 3  |-  ( E. x  e.  A  ps  ->  ps )
43imim2i 14 . 2  |-  ( ( A. x  e.  A  ph 
->  E. x  e.  A  ps )  ->  ( A. x  e.  A  ph  ->  ps ) )
51, 4sylbi 195 1  |-  ( E. x  e.  A  (
ph  ->  ps )  -> 
( A. x  e.  A  ph  ->  ps ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    e. wcel 1762   A.wral 2809   E.wrex 2810
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1592  df-ral 2814  df-rex 2815
This theorem is referenced by:  iinss  4371  uniimadom  8910  hashgt12el  12435
  Copyright terms: Public domain W3C validator