MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Structured version   Unicode version

Theorem r19.35 2973
Description: Restricted quantifier version of Theorem 19.35 of [Margaris] p. 90. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.35  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )

Proof of Theorem r19.35
StepHypRef Expression
1 r19.26 2955 . . . 4  |-  ( A. x  e.  A  ( ph  /\  -.  ps )  <->  ( A. x  e.  A  ph 
/\  A. x  e.  A  -.  ps ) )
2 annim 425 . . . . 5  |-  ( (
ph  /\  -.  ps )  <->  -.  ( ph  ->  ps ) )
32ralbii 2839 . . . 4  |-  ( A. x  e.  A  ( ph  /\  -.  ps )  <->  A. x  e.  A  -.  ( ph  ->  ps )
)
4 df-an 371 . . . 4  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  -.  ps )  <->  -.  ( A. x  e.  A  ph 
->  -.  A. x  e.  A  -.  ps )
)
51, 3, 43bitr3i 275 . . 3  |-  ( A. x  e.  A  -.  ( ph  ->  ps )  <->  -.  ( A. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ps ) )
65con2bii 332 . 2  |-  ( ( A. x  e.  A  ph 
->  -.  A. x  e.  A  -.  ps )  <->  -. 
A. x  e.  A  -.  ( ph  ->  ps ) )
7 dfrex2 2857 . . 3  |-  ( E. x  e.  A  ps  <->  -. 
A. x  e.  A  -.  ps )
87imbi2i 312 . 2  |-  ( ( A. x  e.  A  ph 
->  E. x  e.  A  ps )  <->  ( A. x  e.  A  ph  ->  -.  A. x  e.  A  -.  ps ) )
9 dfrex2 2857 . 2  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  -.  A. x  e.  A  -.  ( ph  ->  ps ) )
106, 8, 93bitr4ri 278 1  |-  ( E. x  e.  A  (
ph  ->  ps )  <->  ( A. x  e.  A  ph  ->  E. x  e.  A  ps ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369   A.wral 2799   E.wrex 2800
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1588  df-ral 2804  df-rex 2805
This theorem is referenced by:  r19.36av  2974  r19.37  2975  r19.43  2982  r19.37zv  3885  r19.36zv  3889  iinexg  4561  bndndx  10690  nmobndseqi  24332  nmobndseqiOLD  24333
  Copyright terms: Public domain W3C validator