Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.32v Structured version   Unicode version

Theorem r19.32v 2861
 Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers. (Contributed by NM, 25-Nov-2003.)
Assertion
Ref Expression
r19.32v
Distinct variable group:   ,
Allowed substitution hints:   ()   ()

Proof of Theorem r19.32v
StepHypRef Expression
1 r19.21v 2798 . 2
2 df-or 370 . . 3
32ralbii 2734 . 2
4 df-or 370 . 2
51, 3, 43bitr4i 277 1
 Colors of variables: wff setvar class Syntax hints:   wn 3   wi 4   wb 184   wo 368  wral 2710 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-10 1775  ax-12 1792 This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1372  df-ex 1587  df-nf 1590  df-ral 2715 This theorem is referenced by:  iinun2  4231  iinuni  4249  axcontlem2  23162  axcontlem7  23167  disjnf  25867  lindslinindsimp2  30886
 Copyright terms: Public domain W3C validator