Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  r19.32 Unicode version

Theorem r19.32 27812
Description: Theorem 19.32 of [Margaris] p. 90 with restricted quantifiers, analogous to r19.32v 2814. (Contributed by Alexander van der Vekens, 29-Jun-2017.)
Hypothesis
Ref Expression
r19.32.1  |-  F/ x ph
Assertion
Ref Expression
r19.32  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  A. x  e.  A  ps ) )

Proof of Theorem r19.32
StepHypRef Expression
1 r19.32.1 . . . 4  |-  F/ x ph
21nfn 1807 . . 3  |-  F/ x  -.  ph
32r19.21 2752 . 2  |-  ( A. x  e.  A  ( -.  ph  ->  ps )  <->  ( -.  ph  ->  A. x  e.  A  ps )
)
4 df-or 360 . . 3  |-  ( (
ph  \/  ps )  <->  ( -.  ph  ->  ps )
)
54ralbii 2690 . 2  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  A. x  e.  A  ( -.  ph 
->  ps ) )
6 df-or 360 . 2  |-  ( (
ph  \/  A. x  e.  A  ps )  <->  ( -.  ph  ->  A. x  e.  A  ps )
)
73, 5, 63bitr4i 269 1  |-  ( A. x  e.  A  ( ph  \/  ps )  <->  ( ph  \/  A. x  e.  A  ps ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358   F/wnf 1550   A.wral 2666
This theorem is referenced by:  2reu3  27833
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-6 1740  ax-11 1757
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-ral 2671
  Copyright terms: Public domain W3C validator