MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.2uz Structured version   Visualization version   Unicode version

Theorem r19.2uz 13407
Description: A version of r19.2z 3857 for upper integer quantifiers. (Contributed by Mario Carneiro, 15-Feb-2014.)
Hypothesis
Ref Expression
rexuz3.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
r19.2uz  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Distinct variable groups:    j, M    ph, j    j, k, Z
Allowed substitution hints:    ph( k)    M( k)

Proof of Theorem r19.2uz
StepHypRef Expression
1 eluzelz 11165 . . . . . 6  |-  ( j  e.  ( ZZ>= `  M
)  ->  j  e.  ZZ )
2 uzid 11170 . . . . . 6  |-  ( j  e.  ZZ  ->  j  e.  ( ZZ>= `  j )
)
3 ne0i 3736 . . . . . 6  |-  ( j  e.  ( ZZ>= `  j
)  ->  ( ZZ>= `  j )  =/=  (/) )
41, 2, 33syl 18 . . . . 5  |-  ( j  e.  ( ZZ>= `  M
)  ->  ( ZZ>= `  j )  =/=  (/) )
5 rexuz3.1 . . . . 5  |-  Z  =  ( ZZ>= `  M )
64, 5eleq2s 2546 . . . 4  |-  ( j  e.  Z  ->  ( ZZ>=
`  j )  =/=  (/) )
7 r19.2z 3857 . . . 4  |-  ( ( ( ZZ>= `  j )  =/=  (/)  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  ( ZZ>= `  j ) ph )
86, 7sylan 474 . . 3  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  (
ZZ>= `  j ) ph )
95uztrn2 11173 . . . . . . 7  |-  ( ( j  e.  Z  /\  k  e.  ( ZZ>= `  j ) )  -> 
k  e.  Z )
109ex 436 . . . . . 6  |-  ( j  e.  Z  ->  (
k  e.  ( ZZ>= `  j )  ->  k  e.  Z ) )
1110anim1d 567 . . . . 5  |-  ( j  e.  Z  ->  (
( k  e.  (
ZZ>= `  j )  /\  ph )  ->  ( k  e.  Z  /\  ph )
) )
1211reximdv2 2857 . . . 4  |-  ( j  e.  Z  ->  ( E. k  e.  ( ZZ>=
`  j ) ph  ->  E. k  e.  Z  ph ) )
1312imp 431 . . 3  |-  ( ( j  e.  Z  /\  E. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
148, 13syldan 473 . 2  |-  ( ( j  e.  Z  /\  A. k  e.  ( ZZ>= `  j ) ph )  ->  E. k  e.  Z  ph )
1514rexlimiva 2874 1  |-  ( E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ph  ->  E. k  e.  Z  ph )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1443    e. wcel 1886    =/= wne 2621   A.wral 2736   E.wrex 2737   (/)c0 3730   ` cfv 5581   ZZcz 10934   ZZ>=cuz 11156
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1668  ax-4 1681  ax-5 1757  ax-6 1804  ax-7 1850  ax-8 1888  ax-9 1895  ax-10 1914  ax-11 1919  ax-12 1932  ax-13 2090  ax-ext 2430  ax-sep 4524  ax-nul 4533  ax-pow 4580  ax-pr 4638  ax-un 6580  ax-cnex 9592  ax-resscn 9593  ax-pre-lttri 9610  ax-pre-lttrn 9611
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 985  df-3an 986  df-tru 1446  df-ex 1663  df-nf 1667  df-sb 1797  df-eu 2302  df-mo 2303  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2580  df-ne 2623  df-nel 2624  df-ral 2741  df-rex 2742  df-rab 2745  df-v 3046  df-sbc 3267  df-csb 3363  df-dif 3406  df-un 3408  df-in 3410  df-ss 3417  df-nul 3731  df-if 3881  df-pw 3952  df-sn 3968  df-pr 3970  df-op 3974  df-uni 4198  df-br 4402  df-opab 4461  df-mpt 4462  df-id 4748  df-xp 4839  df-rel 4840  df-cnv 4841  df-co 4842  df-dm 4843  df-rn 4844  df-res 4845  df-ima 4846  df-iota 5545  df-fun 5583  df-fn 5584  df-f 5585  df-f1 5586  df-fo 5587  df-f1o 5588  df-fv 5589  df-ov 6291  df-er 7360  df-en 7567  df-dom 7568  df-sdom 7569  df-pnf 9674  df-mnf 9675  df-xr 9676  df-ltxr 9677  df-le 9678  df-neg 9860  df-z 10935  df-uz 11157
This theorem is referenced by:  lmcls  20311  1stccnp  20470  iscmet3lem1  22254  iscmet3lem2  22255  uniioombllem6  22539  ulmcau  23343  ulmbdd  23346  ulmcn  23347  ulmdvlem3  23350  iblulm  23355
  Copyright terms: Public domain W3C validator