MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af2 Structured version   Unicode version

Theorem r19.29af2 3005
Description: A commonly used pattern based on r19.29 3002 (Contributed by Thierry Arnoux, 17-Dec-2017.)
Hypotheses
Ref Expression
r19.29af2.p  |-  F/ x ph
r19.29af2.c  |-  F/ x ch
r19.29af2.1  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
r19.29af2.2  |-  ( ph  ->  E. x  e.  A  ps )
Assertion
Ref Expression
r19.29af2  |-  ( ph  ->  ch )

Proof of Theorem r19.29af2
StepHypRef Expression
1 r19.29af2.2 . . 3  |-  ( ph  ->  E. x  e.  A  ps )
2 r19.29af2.p . . . 4  |-  F/ x ph
3 r19.29af2.1 . . . . 5  |-  ( ( ( ph  /\  x  e.  A )  /\  ps )  ->  ch )
43exp31 604 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  ( ps  ->  ch ) ) )
52, 4ralrimi 2867 . . 3  |-  ( ph  ->  A. x  e.  A  ( ps  ->  ch )
)
61, 5jca 532 . 2  |-  ( ph  ->  ( E. x  e.  A  ps  /\  A. x  e.  A  ( ps  ->  ch ) ) )
7 r19.29r 3003 . 2  |-  ( ( E. x  e.  A  ps  /\  A. x  e.  A  ( ps  ->  ch ) )  ->  E. x  e.  A  ( ps  /\  ( ps  ->  ch ) ) )
8 r19.29af2.c . . 3  |-  F/ x ch
9 pm3.35 587 . . . 4  |-  ( ( ps  /\  ( ps 
->  ch ) )  ->  ch )
109a1i 11 . . 3  |-  ( x  e.  A  ->  (
( ps  /\  ( ps  ->  ch ) )  ->  ch ) )
118, 10rexlimi 2949 . 2  |-  ( E. x  e.  A  ( ps  /\  ( ps 
->  ch ) )  ->  ch )
126, 7, 113syl 20 1  |-  ( ph  ->  ch )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369   F/wnf 1599    e. wcel 1767   A.wral 2817   E.wrex 2818
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-10 1786  ax-12 1803
This theorem depends on definitions:  df-bi 185  df-an 371  df-ex 1597  df-nf 1600  df-ral 2822  df-rex 2823
This theorem is referenced by:  r19.29af  3006  restmetu  20958  locfinreflem  27668
  Copyright terms: Public domain W3C validator