MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.28zv Structured version   Unicode version

Theorem r19.28zv 3886
Description: Restricted quantifier version of Theorem 19.28 of [Margaris] p. 90. It is valid only when the domain of quantification is not empty. (Contributed by NM, 19-Aug-2004.)
Assertion
Ref Expression
r19.28zv  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Distinct variable groups:    x, A    ph, x
Allowed substitution hint:    ps( x)

Proof of Theorem r19.28zv
StepHypRef Expression
1 r19.3rzv 3884 . . 3  |-  ( A  =/=  (/)  ->  ( ph  <->  A. x  e.  A  ph ) )
21anbi1d 704 . 2  |-  ( A  =/=  (/)  ->  ( ( ph  /\  A. x  e.  A  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) ) )
3 r19.26 2955 . 2  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
42, 3syl6rbbr 264 1  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  ( ph  /\  ps )  <->  ( ph  /\ 
A. x  e.  A  ps ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    =/= wne 2648   A.wral 2799   (/)c0 3748
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-v 3080  df-dif 3442  df-nul 3749
This theorem is referenced by:  raaanv  3899  raltpd  4109  iinrab  4343  iindif2  4350  iinin2  4351  reusv2lem5  4608  reusv7OLD  4615  xpiindi  5086  fint  5701  ixpiin  7402  neips  18859  txflf  19721  dfpo2  27732  diaglbN  35063  dihglbcpreN  35308
  Copyright terms: Public domain W3C validator