MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.26-3 Structured version   Unicode version

Theorem r19.26-3 2986
Description: Version of r19.26 2984 with three quantifiers. (Contributed by FL, 22-Nov-2010.)
Assertion
Ref Expression
r19.26-3  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )

Proof of Theorem r19.26-3
StepHypRef Expression
1 df-3an 975 . . 3  |-  ( (
ph  /\  ps  /\  ch ) 
<->  ( ( ph  /\  ps )  /\  ch )
)
21ralbii 2888 . 2  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<-> 
A. x  e.  A  ( ( ph  /\  ps )  /\  ch )
)
3 r19.26 2984 . 2  |-  ( A. x  e.  A  (
( ph  /\  ps )  /\  ch )  <->  ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch ) )
4 r19.26 2984 . . . 4  |-  ( A. x  e.  A  ( ph  /\  ps )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps ) )
54anbi1i 695 . . 3  |-  ( ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch )  <->  ( ( A. x  e.  A  ph  /\  A. x  e.  A  ps )  /\  A. x  e.  A  ch ) )
6 df-3an 975 . . 3  |-  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  ps  /\  A. x  e.  A  ch )  <->  ( ( A. x  e.  A  ph 
/\  A. x  e.  A  ps )  /\  A. x  e.  A  ch )
)
75, 6bitr4i 252 . 2  |-  ( ( A. x  e.  A  ( ph  /\  ps )  /\  A. x  e.  A  ch )  <->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )
82, 3, 73bitri 271 1  |-  ( A. x  e.  A  ( ph  /\  ps  /\  ch ) 
<->  ( A. x  e.  A  ph  /\  A. x  e.  A  ps  /\ 
A. x  e.  A  ch ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 184    /\ wa 369    /\ w3a 973   A.wral 2807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632
This theorem depends on definitions:  df-bi 185  df-an 371  df-3an 975  df-ral 2812
This theorem is referenced by:  sgrp2rid2ex  16171  axeuclid  24392  axcontlem8  24400  stoweidlem60  32003
  Copyright terms: Public domain W3C validator