Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.23t Structured version   Unicode version

Theorem r19.23t 2910
 Description: Closed theorem form of r19.23 2911. (Contributed by NM, 4-Mar-2013.) (Revised by Mario Carneiro, 8-Oct-2016.)
Assertion
Ref Expression
r19.23t

Proof of Theorem r19.23t
StepHypRef Expression
1 19.23t 1966 . 2
2 df-ral 2787 . . 3
3 impexp 447 . . . 4
43albii 1687 . . 3
52, 4bitr4i 255 . 2
6 df-rex 2788 . . 3
76imbi1i 326 . 2
81, 5, 73bitr4g 291 1
 Colors of variables: wff setvar class Syntax hints:   wi 4   wb 187   wa 370  wal 1435  wex 1659  wnf 1663   wcel 1870  wral 2782  wrex 2783 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1751  ax-6 1797  ax-7 1841  ax-10 1889  ax-12 1907 This theorem depends on definitions:  df-bi 188  df-an 372  df-ex 1660  df-nf 1664  df-ral 2787  df-rex 2788 This theorem is referenced by:  r19.23  2911  rexlimd2  2915  riotasv3d  32241
 Copyright terms: Public domain W3C validator