MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quotdgr Structured version   Unicode version

Theorem quotdgr 22566
Description: Remainder property of the quotient function. (Contributed by Mario Carneiro, 26-Jul-2014.)
Hypothesis
Ref Expression
quotdgr.1  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
Assertion
Ref Expression
quotdgr  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )

Proof of Theorem quotdgr
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addcl 9586 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  +  y )  e.  CC )
21adantl 466 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  +  y )  e.  CC )
3 mulcl 9588 . . . 4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( x  x.  y
)  e.  CC )
43adantl 466 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  /\  (
x  e.  CC  /\  y  e.  CC )
)  ->  ( x  x.  y )  e.  CC )
5 reccl 10226 . . . 4  |-  ( ( x  e.  CC  /\  x  =/=  0 )  -> 
( 1  /  x
)  e.  CC )
65adantl 466 . . 3  |-  ( ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  /\  (
x  e.  CC  /\  x  =/=  0 ) )  ->  ( 1  /  x )  e.  CC )
7 neg1cn 10651 . . . 4  |-  -u 1  e.  CC
87a1i 11 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  -u 1  e.  CC )
9 plyssc 22465 . . . 4  |-  (Poly `  S )  C_  (Poly `  CC )
10 simp1 996 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  F  e.  (Poly `  S )
)
119, 10sseldi 3507 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  F  e.  (Poly `  CC )
)
12 simp2 997 . . . 4  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  G  e.  (Poly `  S )
)
139, 12sseldi 3507 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  G  e.  (Poly `  CC )
)
14 simp3 998 . . 3  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  G  =/=  0p )
15 quotdgr.1 . . 3  |-  R  =  ( F  oF  -  ( G  oF  x.  ( F quot  G ) ) )
162, 4, 6, 8, 11, 13, 14, 15quotlem 22563 . 2  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  (
( F quot  G )  e.  (Poly `  CC )  /\  ( R  =  0p  \/  (deg `  R )  <  (deg `  G ) ) ) )
1716simprd 463 1  |-  ( ( F  e.  (Poly `  S )  /\  G  e.  (Poly `  S )  /\  G  =/=  0p )  ->  ( R  =  0p  \/  (deg `  R )  <  (deg `  G )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 368    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   class class class wbr 4453   ` cfv 5594  (class class class)co 6295    oFcof 6533   CCcc 9502   0cc0 9504   1c1 9505    + caddc 9507    x. cmul 9509    < clt 9640    - cmin 9817   -ucneg 9818    / cdiv 10218   0pc0p 21944  Polycply 22449  degcdgr 22452   quot cquot 22553
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-fal 1385  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-pm 7435  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-sup 7913  df-oi 7947  df-card 8332  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-rp 11233  df-fz 11685  df-fzo 11805  df-fl 11909  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12912  df-re 12913  df-im 12914  df-sqrt 13048  df-abs 13049  df-clim 13291  df-rlim 13292  df-sum 13489  df-0p 21945  df-ply 22453  df-coe 22455  df-dgr 22456  df-quot 22554
This theorem is referenced by:  plyrem  22568  quotcan  22572
  Copyright terms: Public domain W3C validator