MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quartlem4 Structured version   Unicode version

Theorem quartlem4 22140
Description: Closure lemmas for quart 22141. (Contributed by Mario Carneiro, 7-May-2015.)
Hypotheses
Ref Expression
quart.a  |-  ( ph  ->  A  e.  CC )
quart.b  |-  ( ph  ->  B  e.  CC )
quart.c  |-  ( ph  ->  C  e.  CC )
quart.d  |-  ( ph  ->  D  e.  CC )
quart.x  |-  ( ph  ->  X  e.  CC )
quart.e  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
quart.p  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
quart.q  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
quart.r  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
quart.u  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
quart.v  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
quart.w  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
quart.s  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
quart.m  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
quart.t  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^c  ( 1  /  3 ) ) )
quart.t0  |-  ( ph  ->  T  =/=  0 )
quart.m0  |-  ( ph  ->  M  =/=  0 )
quart.i  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
quart.j  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
Assertion
Ref Expression
quartlem4  |-  ( ph  ->  ( S  =/=  0  /\  I  e.  CC  /\  J  e.  CC ) )

Proof of Theorem quartlem4
StepHypRef Expression
1 quart.s . . 3  |-  ( ph  ->  S  =  ( ( sqr `  M )  /  2 ) )
2 quart.a . . . . . . 7  |-  ( ph  ->  A  e.  CC )
3 quart.b . . . . . . 7  |-  ( ph  ->  B  e.  CC )
4 quart.c . . . . . . 7  |-  ( ph  ->  C  e.  CC )
5 quart.d . . . . . . 7  |-  ( ph  ->  D  e.  CC )
6 quart.e . . . . . . 7  |-  ( ph  ->  E  =  -u ( A  /  4 ) )
7 quart.p . . . . . . 7  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
8 quart.q . . . . . . 7  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
9 quart.r . . . . . . 7  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
10 quart.u . . . . . . 7  |-  ( ph  ->  U  =  ( ( P ^ 2 )  +  (; 1 2  x.  R
) ) )
11 quart.v . . . . . . 7  |-  ( ph  ->  V  =  ( (
-u ( 2  x.  ( P ^ 3 ) )  -  (; 2 7  x.  ( Q ^
2 ) ) )  +  (; 7 2  x.  ( P  x.  R )
) ) )
12 quart.w . . . . . . 7  |-  ( ph  ->  W  =  ( sqr `  ( ( V ^
2 )  -  (
4  x.  ( U ^ 3 ) ) ) ) )
13 quart.m . . . . . . 7  |-  ( ph  ->  M  =  -u (
( ( ( 2  x.  P )  +  T )  +  ( U  /  T ) )  /  3 ) )
14 quart.t . . . . . . 7  |-  ( ph  ->  T  =  ( ( ( V  +  W
)  /  2 )  ^c  ( 1  /  3 ) ) )
15 quart.t0 . . . . . . 7  |-  ( ph  ->  T  =/=  0 )
162, 3, 4, 5, 2, 6, 7, 8, 9, 10, 11, 12, 1, 13, 14, 15quartlem3 22139 . . . . . 6  |-  ( ph  ->  ( S  e.  CC  /\  M  e.  CC  /\  T  e.  CC )
)
1716simp2d 994 . . . . 5  |-  ( ph  ->  M  e.  CC )
1817sqrcld 12907 . . . 4  |-  ( ph  ->  ( sqr `  M
)  e.  CC )
19 2cnd 10382 . . . 4  |-  ( ph  ->  2  e.  CC )
2017sqsqrd 12909 . . . . . 6  |-  ( ph  ->  ( ( sqr `  M
) ^ 2 )  =  M )
21 quart.m0 . . . . . 6  |-  ( ph  ->  M  =/=  0 )
2220, 21eqnetrd 2616 . . . . 5  |-  ( ph  ->  ( ( sqr `  M
) ^ 2 )  =/=  0 )
23 sqne0 11916 . . . . . 6  |-  ( ( sqr `  M )  e.  CC  ->  (
( ( sqr `  M
) ^ 2 )  =/=  0  <->  ( sqr `  M )  =/=  0
) )
2418, 23syl 16 . . . . 5  |-  ( ph  ->  ( ( ( sqr `  M ) ^ 2 )  =/=  0  <->  ( sqr `  M )  =/=  0 ) )
2522, 24mpbid 210 . . . 4  |-  ( ph  ->  ( sqr `  M
)  =/=  0 )
26 2ne0 10402 . . . . 5  |-  2  =/=  0
2726a1i 11 . . . 4  |-  ( ph  ->  2  =/=  0 )
2818, 19, 25, 27divne0d 10111 . . 3  |-  ( ph  ->  ( ( sqr `  M
)  /  2 )  =/=  0 )
291, 28eqnetrd 2616 . 2  |-  ( ph  ->  S  =/=  0 )
30 quart.i . . 3  |-  ( ph  ->  I  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) ) ) )
3116simp1d 993 . . . . . . . 8  |-  ( ph  ->  S  e.  CC )
3231sqcld 11990 . . . . . . 7  |-  ( ph  ->  ( S ^ 2 )  e.  CC )
3332negcld 9694 . . . . . 6  |-  ( ph  -> 
-u ( S ^
2 )  e.  CC )
342, 3, 4, 5, 7, 8, 9quart1cl 22134 . . . . . . . 8  |-  ( ph  ->  ( P  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )
)
3534simp1d 993 . . . . . . 7  |-  ( ph  ->  P  e.  CC )
3635halfcld 10557 . . . . . 6  |-  ( ph  ->  ( P  /  2
)  e.  CC )
3733, 36subcld 9707 . . . . 5  |-  ( ph  ->  ( -u ( S ^ 2 )  -  ( P  /  2
) )  e.  CC )
3834simp2d 994 . . . . . . 7  |-  ( ph  ->  Q  e.  CC )
39 4cn 10387 . . . . . . . 8  |-  4  e.  CC
4039a1i 11 . . . . . . 7  |-  ( ph  ->  4  e.  CC )
41 4ne0 10406 . . . . . . . 8  |-  4  =/=  0
4241a1i 11 . . . . . . 7  |-  ( ph  ->  4  =/=  0 )
4338, 40, 42divcld 10095 . . . . . 6  |-  ( ph  ->  ( Q  /  4
)  e.  CC )
4443, 31, 29divcld 10095 . . . . 5  |-  ( ph  ->  ( ( Q  / 
4 )  /  S
)  e.  CC )
4537, 44addcld 9393 . . . 4  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  +  ( ( Q  /  4
)  /  S ) )  e.  CC )
4645sqrcld 12907 . . 3  |-  ( ph  ->  ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  +  ( ( Q  /  4 )  /  S ) ) )  e.  CC )
4730, 46eqeltrd 2507 . 2  |-  ( ph  ->  I  e.  CC )
48 quart.j . . 3  |-  ( ph  ->  J  =  ( sqr `  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) ) ) )
4937, 44subcld 9707 . . . 4  |-  ( ph  ->  ( ( -u ( S ^ 2 )  -  ( P  /  2
) )  -  (
( Q  /  4
)  /  S ) )  e.  CC )
5049sqrcld 12907 . . 3  |-  ( ph  ->  ( sqr `  (
( -u ( S ^
2 )  -  ( P  /  2 ) )  -  ( ( Q  /  4 )  /  S ) ) )  e.  CC )
5148, 50eqeltrd 2507 . 2  |-  ( ph  ->  J  e.  CC )
5229, 47, 513jca 1161 1  |-  ( ph  ->  ( S  =/=  0  /\  I  e.  CC  /\  J  e.  CC ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ w3a 958    = wceq 1362    e. wcel 1755    =/= wne 2596   ` cfv 5406  (class class class)co 6080   CCcc 9268   0cc0 9270   1c1 9271    + caddc 9273    x. cmul 9275    - cmin 9583   -ucneg 9584    / cdiv 9981   2c2 10359   3c3 10360   4c4 10361   5c5 10362   6c6 10363   7c7 10364   8c8 10365  ;cdc 10743   ^cexp 11849   sqrcsqr 12706    ^c ccxp 21892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-inf2 7835  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-pre-sup 9348  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-fal 1368  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-iin 4162  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-se 4667  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-isom 5415  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-supp 6680  df-recs 6818  df-rdg 6852  df-1o 6908  df-2o 6909  df-oadd 6912  df-er 7089  df-map 7204  df-pm 7205  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-fsupp 7609  df-fi 7649  df-sup 7679  df-oi 7712  df-card 8097  df-cda 8325  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-rp 10980  df-xneg 11077  df-xadd 11078  df-xmul 11079  df-ioo 11292  df-ioc 11293  df-ico 11294  df-icc 11295  df-fz 11425  df-fzo 11533  df-fl 11626  df-mod 11693  df-seq 11791  df-exp 11850  df-fac 12036  df-bc 12063  df-hash 12088  df-shft 12540  df-cj 12572  df-re 12573  df-im 12574  df-sqr 12708  df-abs 12709  df-limsup 12933  df-clim 12950  df-rlim 12951  df-sum 13148  df-ef 13336  df-sin 13338  df-cos 13339  df-pi 13341  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-hom 14245  df-cco 14246  df-rest 14344  df-topn 14345  df-0g 14363  df-gsum 14364  df-topgen 14365  df-pt 14366  df-prds 14369  df-xrs 14423  df-qtop 14428  df-imas 14429  df-xps 14431  df-mre 14507  df-mrc 14508  df-acs 14510  df-mnd 15398  df-submnd 15448  df-mulg 15528  df-cntz 15815  df-cmn 16259  df-psmet 17653  df-xmet 17654  df-met 17655  df-bl 17656  df-mopn 17657  df-fbas 17658  df-fg 17659  df-cnfld 17663  df-top 18345  df-bases 18347  df-topon 18348  df-topsp 18349  df-cld 18465  df-ntr 18466  df-cls 18467  df-nei 18544  df-lp 18582  df-perf 18583  df-cn 18673  df-cnp 18674  df-haus 18761  df-tx 18977  df-hmeo 19170  df-fil 19261  df-fm 19353  df-flim 19354  df-flf 19355  df-xms 19737  df-ms 19738  df-tms 19739  df-cncf 20296  df-limc 21183  df-dv 21184  df-log 21893  df-cxp 21894
This theorem is referenced by:  quart  22141
  Copyright terms: Public domain W3C validator