MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  quart1 Structured version   Visualization version   Unicode version

Theorem quart1 23861
Description: Depress a quartic equation. (Contributed by Mario Carneiro, 6-May-2015.)
Hypotheses
Ref Expression
quart1.a  |-  ( ph  ->  A  e.  CC )
quart1.b  |-  ( ph  ->  B  e.  CC )
quart1.c  |-  ( ph  ->  C  e.  CC )
quart1.d  |-  ( ph  ->  D  e.  CC )
quart1.p  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
quart1.q  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
quart1.r  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
quart1.x  |-  ( ph  ->  X  e.  CC )
quart1.y  |-  ( ph  ->  Y  =  ( X  +  ( A  / 
4 ) ) )
Assertion
Ref Expression
quart1  |-  ( ph  ->  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  ( ( ( Y ^ 4 )  +  ( P  x.  ( Y ^ 2 ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) )

Proof of Theorem quart1
StepHypRef Expression
1 quart1.y . . . . . . 7  |-  ( ph  ->  Y  =  ( X  +  ( A  / 
4 ) ) )
21oveq1d 6323 . . . . . 6  |-  ( ph  ->  ( Y ^ 4 )  =  ( ( X  +  ( A  /  4 ) ) ^ 4 ) )
3 quart1.x . . . . . . 7  |-  ( ph  ->  X  e.  CC )
4 quart1.a . . . . . . . 8  |-  ( ph  ->  A  e.  CC )
5 4cn 10709 . . . . . . . . 9  |-  4  e.  CC
65a1i 11 . . . . . . . 8  |-  ( ph  ->  4  e.  CC )
7 4ne0 10728 . . . . . . . . 9  |-  4  =/=  0
87a1i 11 . . . . . . . 8  |-  ( ph  ->  4  =/=  0 )
94, 6, 8divcld 10405 . . . . . . 7  |-  ( ph  ->  ( A  /  4
)  e.  CC )
10 binom4 23855 . . . . . . 7  |-  ( ( X  e.  CC  /\  ( A  /  4
)  e.  CC )  ->  ( ( X  +  ( A  / 
4 ) ) ^
4 )  =  ( ( ( X ^
4 )  +  ( 4  x.  ( ( X ^ 3 )  x.  ( A  / 
4 ) ) ) )  +  ( ( 6  x.  ( ( X ^ 2 )  x.  ( ( A  /  4 ) ^
2 ) ) )  +  ( ( 4  x.  ( X  x.  ( ( A  / 
4 ) ^ 3 ) ) )  +  ( ( A  / 
4 ) ^ 4 ) ) ) ) )
113, 9, 10syl2anc 673 . . . . . 6  |-  ( ph  ->  ( ( X  +  ( A  /  4
) ) ^ 4 )  =  ( ( ( X ^ 4 )  +  ( 4  x.  ( ( X ^ 3 )  x.  ( A  /  4
) ) ) )  +  ( ( 6  x.  ( ( X ^ 2 )  x.  ( ( A  / 
4 ) ^ 2 ) ) )  +  ( ( 4  x.  ( X  x.  (
( A  /  4
) ^ 3 ) ) )  +  ( ( A  /  4
) ^ 4 ) ) ) ) )
12 3nn0 10911 . . . . . . . . . . 11  |-  3  e.  NN0
13 expcl 12328 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  3  e.  NN0 )  -> 
( X ^ 3 )  e.  CC )
143, 12, 13sylancl 675 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ 3 )  e.  CC )
156, 14, 9mul12d 9860 . . . . . . . . 9  |-  ( ph  ->  ( 4  x.  (
( X ^ 3 )  x.  ( A  /  4 ) ) )  =  ( ( X ^ 3 )  x.  ( 4  x.  ( A  /  4
) ) ) )
164, 6, 8divcan2d 10407 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( A  /  4 ) )  =  A )
1716oveq2d 6324 . . . . . . . . 9  |-  ( ph  ->  ( ( X ^
3 )  x.  (
4  x.  ( A  /  4 ) ) )  =  ( ( X ^ 3 )  x.  A ) )
1814, 4mulcomd 9682 . . . . . . . . 9  |-  ( ph  ->  ( ( X ^
3 )  x.  A
)  =  ( A  x.  ( X ^
3 ) ) )
1915, 17, 183eqtrd 2509 . . . . . . . 8  |-  ( ph  ->  ( 4  x.  (
( X ^ 3 )  x.  ( A  /  4 ) ) )  =  ( A  x.  ( X ^
3 ) ) )
2019oveq2d 6324 . . . . . . 7  |-  ( ph  ->  ( ( X ^
4 )  +  ( 4  x.  ( ( X ^ 3 )  x.  ( A  / 
4 ) ) ) )  =  ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) ) )
21 6nn 10794 . . . . . . . . . . . 12  |-  6  e.  NN
2221nncni 10641 . . . . . . . . . . 11  |-  6  e.  CC
2322a1i 11 . . . . . . . . . 10  |-  ( ph  ->  6  e.  CC )
249sqcld 12452 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  e.  CC )
253sqcld 12452 . . . . . . . . . 10  |-  ( ph  ->  ( X ^ 2 )  e.  CC )
2623, 24, 25mulassd 9684 . . . . . . . . 9  |-  ( ph  ->  ( ( 6  x.  ( ( A  / 
4 ) ^ 2 ) )  x.  ( X ^ 2 ) )  =  ( 6  x.  ( ( ( A  /  4 ) ^
2 )  x.  ( X ^ 2 ) ) ) )
27 3cn 10706 . . . . . . . . . . . . . . . 16  |-  3  e.  CC
28 2cn 10702 . . . . . . . . . . . . . . . 16  |-  2  e.  CC
29 3t2e6 10784 . . . . . . . . . . . . . . . 16  |-  ( 3  x.  2 )  =  6
3027, 28, 29mulcomli 9668 . . . . . . . . . . . . . . 15  |-  ( 2  x.  3 )  =  6
31 8cn 10717 . . . . . . . . . . . . . . . 16  |-  8  e.  CC
32 8t2e16 11162 . . . . . . . . . . . . . . . 16  |-  ( 8  x.  2 )  = ; 1
6
3331, 28, 32mulcomli 9668 . . . . . . . . . . . . . . 15  |-  ( 2  x.  8 )  = ; 1
6
3430, 33oveq12i 6320 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  3 )  /  ( 2  x.  8 ) )  =  ( 6  / ; 1 6 )
35 8nn 10796 . . . . . . . . . . . . . . . . 17  |-  8  e.  NN
3635nnne0i 10666 . . . . . . . . . . . . . . . 16  |-  8  =/=  0
3731, 36pm3.2i 462 . . . . . . . . . . . . . . 15  |-  ( 8  e.  CC  /\  8  =/=  0 )
38 2cnne0 10847 . . . . . . . . . . . . . . 15  |-  ( 2  e.  CC  /\  2  =/=  0 )
39 divcan5 10331 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( 8  e.  CC  /\  8  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) )  -> 
( ( 2  x.  3 )  /  (
2  x.  8 ) )  =  ( 3  /  8 ) )
4027, 37, 38, 39mp3an 1390 . . . . . . . . . . . . . 14  |-  ( ( 2  x.  3 )  /  ( 2  x.  8 ) )  =  ( 3  /  8
)
4134, 40eqtr3i 2495 . . . . . . . . . . . . 13  |-  ( 6  / ; 1 6 )  =  ( 3  /  8
)
4241oveq2i 6319 . . . . . . . . . . . 12  |-  ( ( A ^ 2 )  x.  ( 6  / ; 1 6 ) )  =  ( ( A ^ 2 )  x.  ( 3  /  8 ) )
434sqcld 12452 . . . . . . . . . . . . 13  |-  ( ph  ->  ( A ^ 2 )  e.  CC )
44 1nn0 10909 . . . . . . . . . . . . . . . 16  |-  1  e.  NN0
4544, 21decnncl 11087 . . . . . . . . . . . . . . 15  |- ; 1 6  e.  NN
4645nncni 10641 . . . . . . . . . . . . . 14  |- ; 1 6  e.  CC
4746a1i 11 . . . . . . . . . . . . 13  |-  ( ph  -> ; 1
6  e.  CC )
4845nnne0i 10666 . . . . . . . . . . . . . 14  |- ; 1 6  =/=  0
4948a1i 11 . . . . . . . . . . . . 13  |-  ( ph  -> ; 1
6  =/=  0 )
5043, 23, 47, 49div12d 10441 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A ^
2 )  x.  (
6  / ; 1 6 ) )  =  ( 6  x.  ( ( A ^
2 )  / ; 1 6 ) ) )
5142, 50syl5eqr 2519 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A ^
2 )  x.  (
3  /  8 ) )  =  ( 6  x.  ( ( A ^ 2 )  / ; 1 6 ) ) )
5227, 31, 36divcli 10371 . . . . . . . . . . . 12  |-  ( 3  /  8 )  e.  CC
53 mulcom 9643 . . . . . . . . . . . 12  |-  ( ( ( 3  /  8
)  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( ( 3  / 
8 )  x.  ( A ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( 3  /  8
) ) )
5452, 43, 53sylancr 676 . . . . . . . . . . 11  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  =  ( ( A ^ 2 )  x.  ( 3  /  8
) ) )
554, 6, 8sqdivd 12467 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  =  ( ( A ^ 2 )  /  ( 4 ^ 2 ) ) )
565sqvali 12392 . . . . . . . . . . . . . . 15  |-  ( 4 ^ 2 )  =  ( 4  x.  4 )
57 4t4e16 11147 . . . . . . . . . . . . . . 15  |-  ( 4  x.  4 )  = ; 1
6
5856, 57eqtri 2493 . . . . . . . . . . . . . 14  |-  ( 4 ^ 2 )  = ; 1
6
5958oveq2i 6319 . . . . . . . . . . . . 13  |-  ( ( A ^ 2 )  /  ( 4 ^ 2 ) )  =  ( ( A ^
2 )  / ; 1 6 )
6055, 59syl6eq 2521 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( A  / 
4 ) ^ 2 )  =  ( ( A ^ 2 )  / ; 1 6 ) )
6160oveq2d 6324 . . . . . . . . . . 11  |-  ( ph  ->  ( 6  x.  (
( A  /  4
) ^ 2 ) )  =  ( 6  x.  ( ( A ^ 2 )  / ; 1 6 ) ) )
6251, 54, 613eqtr4d 2515 . . . . . . . . . 10  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  =  ( 6  x.  ( ( A  / 
4 ) ^ 2 ) ) )
6362oveq1d 6323 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( X ^ 2 ) )  =  ( ( 6  x.  ( ( A  /  4 ) ^
2 ) )  x.  ( X ^ 2 ) ) )
6425, 24mulcomd 9682 . . . . . . . . . 10  |-  ( ph  ->  ( ( X ^
2 )  x.  (
( A  /  4
) ^ 2 ) )  =  ( ( ( A  /  4
) ^ 2 )  x.  ( X ^
2 ) ) )
6564oveq2d 6324 . . . . . . . . 9  |-  ( ph  ->  ( 6  x.  (
( X ^ 2 )  x.  ( ( A  /  4 ) ^ 2 ) ) )  =  ( 6  x.  ( ( ( A  /  4 ) ^ 2 )  x.  ( X ^ 2 ) ) ) )
6626, 63, 653eqtr4rd 2516 . . . . . . . 8  |-  ( ph  ->  ( 6  x.  (
( X ^ 2 )  x.  ( ( A  /  4 ) ^ 2 ) ) )  =  ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) ) )
67 expcl 12328 . . . . . . . . . . . 12  |-  ( ( ( A  /  4
)  e.  CC  /\  3  e.  NN0 )  -> 
( ( A  / 
4 ) ^ 3 )  e.  CC )
689, 12, 67sylancl 675 . . . . . . . . . . 11  |-  ( ph  ->  ( ( A  / 
4 ) ^ 3 )  e.  CC )
696, 3, 68mul12d 9860 . . . . . . . . . 10  |-  ( ph  ->  ( 4  x.  ( X  x.  ( ( A  /  4 ) ^
3 ) ) )  =  ( X  x.  ( 4  x.  (
( A  /  4
) ^ 3 ) ) ) )
706, 68mulcld 9681 . . . . . . . . . . 11  |-  ( ph  ->  ( 4  x.  (
( A  /  4
) ^ 3 ) )  e.  CC )
713, 70mulcomd 9682 . . . . . . . . . 10  |-  ( ph  ->  ( X  x.  (
4  x.  ( ( A  /  4 ) ^ 3 ) ) )  =  ( ( 4  x.  ( ( A  /  4 ) ^ 3 ) )  x.  X ) )
72 df-3 10691 . . . . . . . . . . . . . . . . 17  |-  3  =  ( 2  +  1 )
7372oveq2i 6319 . . . . . . . . . . . . . . . 16  |-  ( 4 ^ 3 )  =  ( 4 ^ (
2  +  1 ) )
74 2nn0 10910 . . . . . . . . . . . . . . . . 17  |-  2  e.  NN0
75 expp1 12317 . . . . . . . . . . . . . . . . 17  |-  ( ( 4  e.  CC  /\  2  e.  NN0 )  -> 
( 4 ^ (
2  +  1 ) )  =  ( ( 4 ^ 2 )  x.  4 ) )
765, 74, 75mp2an 686 . . . . . . . . . . . . . . . 16  |-  ( 4 ^ ( 2  +  1 ) )  =  ( ( 4 ^ 2 )  x.  4 )
7758oveq1i 6318 . . . . . . . . . . . . . . . 16  |-  ( ( 4 ^ 2 )  x.  4 )  =  (; 1 6  x.  4 )
7873, 76, 773eqtri 2497 . . . . . . . . . . . . . . 15  |-  ( 4 ^ 3 )  =  (; 1 6  x.  4 )
7978oveq2i 6319 . . . . . . . . . . . . . 14  |-  ( ( A ^ 3 )  /  ( 4 ^ 3 ) )  =  ( ( A ^
3 )  /  (; 1 6  x.  4 ) )
8012a1i 11 . . . . . . . . . . . . . . 15  |-  ( ph  ->  3  e.  NN0 )
814, 6, 8, 80expdivd 12468 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A  / 
4 ) ^ 3 )  =  ( ( A ^ 3 )  /  ( 4 ^ 3 ) ) )
82 expcl 12328 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  CC  /\  3  e.  NN0 )  -> 
( A ^ 3 )  e.  CC )
834, 12, 82sylancl 675 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( A ^ 3 )  e.  CC )
8483, 47, 6, 49, 8divdiv1d 10436 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( ( A ^ 3 )  / ; 1 6 )  /  4 )  =  ( ( A ^ 3 )  / 
(; 1 6  x.  4 ) ) )
8579, 81, 843eqtr4a 2531 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( A  / 
4 ) ^ 3 )  =  ( ( ( A ^ 3 )  / ; 1 6 )  / 
4 ) )
8685oveq2d 6324 . . . . . . . . . . . 12  |-  ( ph  ->  ( 4  x.  (
( A  /  4
) ^ 3 ) )  =  ( 4  x.  ( ( ( A ^ 3 )  / ; 1 6 )  / 
4 ) ) )
8732oveq2i 6319 . . . . . . . . . . . . 13  |-  ( ( A ^ 3 )  /  ( 8  x.  2 ) )  =  ( ( A ^
3 )  / ; 1 6 )
8831a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  8  e.  CC )
8928a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  e.  CC )
9036a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  8  =/=  0 )
91 2ne0 10724 . . . . . . . . . . . . . . 15  |-  2  =/=  0
9291a1i 11 . . . . . . . . . . . . . 14  |-  ( ph  ->  2  =/=  0 )
9383, 88, 89, 90, 92divdiv1d 10436 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A ^ 3 )  / 
8 )  /  2
)  =  ( ( A ^ 3 )  /  ( 8  x.  2 ) ) )
9483, 47, 49divcld 10405 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( A ^
3 )  / ; 1 6 )  e.  CC )
9594, 6, 8divcan2d 10407 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 4  x.  (
( ( A ^
3 )  / ; 1 6 )  / 
4 ) )  =  ( ( A ^
3 )  / ; 1 6 ) )
9687, 93, 953eqtr4a 2531 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( A ^ 3 )  / 
8 )  /  2
)  =  ( 4  x.  ( ( ( A ^ 3 )  / ; 1 6 )  / 
4 ) ) )
9786, 96eqtr4d 2508 . . . . . . . . . . 11  |-  ( ph  ->  ( 4  x.  (
( A  /  4
) ^ 3 ) )  =  ( ( ( A ^ 3 )  /  8 )  /  2 ) )
9897oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( ( 4  x.  ( ( A  / 
4 ) ^ 3 ) )  x.  X
)  =  ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X ) )
9969, 71, 983eqtrd 2509 . . . . . . . . 9  |-  ( ph  ->  ( 4  x.  ( X  x.  ( ( A  /  4 ) ^
3 ) ) )  =  ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X ) )
100 4nn0 10912 . . . . . . . . . . . 12  |-  4  e.  NN0
101100a1i 11 . . . . . . . . . . 11  |-  ( ph  ->  4  e.  NN0 )
1024, 6, 8, 101expdivd 12468 . . . . . . . . . 10  |-  ( ph  ->  ( ( A  / 
4 ) ^ 4 )  =  ( ( A ^ 4 )  /  ( 4 ^ 4 ) ) )
103 expmul 12355 . . . . . . . . . . . . . . 15  |-  ( ( 2  e.  CC  /\  2  e.  NN0  /\  4  e.  NN0 )  ->  (
2 ^ ( 2  x.  4 ) )  =  ( ( 2 ^ 2 ) ^
4 ) )
10428, 74, 100, 103mp3an 1390 . . . . . . . . . . . . . 14  |-  ( 2 ^ ( 2  x.  4 ) )  =  ( ( 2 ^ 2 ) ^ 4 )
105 4t2e8 10786 . . . . . . . . . . . . . . . 16  |-  ( 4  x.  2 )  =  8
1065, 28, 105mulcomli 9668 . . . . . . . . . . . . . . 15  |-  ( 2  x.  4 )  =  8
107106oveq2i 6319 . . . . . . . . . . . . . 14  |-  ( 2 ^ ( 2  x.  4 ) )  =  ( 2 ^ 8 )
108104, 107eqtr3i 2495 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 ) ^ 4 )  =  ( 2 ^ 8 )
109 sq2 12409 . . . . . . . . . . . . . 14  |-  ( 2 ^ 2 )  =  4
110109oveq1i 6318 . . . . . . . . . . . . 13  |-  ( ( 2 ^ 2 ) ^ 4 )  =  ( 4 ^ 4 )
111108, 110eqtr3i 2495 . . . . . . . . . . . 12  |-  ( 2 ^ 8 )  =  ( 4 ^ 4 )
112 2exp8 15138 . . . . . . . . . . . 12  |-  ( 2 ^ 8 )  = ;; 2 5 6
113111, 112eqtr3i 2495 . . . . . . . . . . 11  |-  ( 4 ^ 4 )  = ;; 2 5 6
114113oveq2i 6319 . . . . . . . . . 10  |-  ( ( A ^ 4 )  /  ( 4 ^ 4 ) )  =  ( ( A ^
4 )  / ;; 2 5 6 )
115102, 114syl6eq 2521 . . . . . . . . 9  |-  ( ph  ->  ( ( A  / 
4 ) ^ 4 )  =  ( ( A ^ 4 )  / ;; 2 5 6 ) )
11699, 115oveq12d 6326 . . . . . . . 8  |-  ( ph  ->  ( ( 4  x.  ( X  x.  (
( A  /  4
) ^ 3 ) ) )  +  ( ( A  /  4
) ^ 4 ) )  =  ( ( ( ( ( A ^ 3 )  / 
8 )  /  2
)  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )
11766, 116oveq12d 6326 . . . . . . 7  |-  ( ph  ->  ( ( 6  x.  ( ( X ^
2 )  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( ( 4  x.  ( X  x.  ( ( A  /  4 ) ^
3 ) ) )  +  ( ( A  /  4 ) ^
4 ) ) )  =  ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) )
11820, 117oveq12d 6326 . . . . . 6  |-  ( ph  ->  ( ( ( X ^ 4 )  +  ( 4  x.  (
( X ^ 3 )  x.  ( A  /  4 ) ) ) )  +  ( ( 6  x.  (
( X ^ 2 )  x.  ( ( A  /  4 ) ^ 2 ) ) )  +  ( ( 4  x.  ( X  x.  ( ( A  /  4 ) ^
3 ) ) )  +  ( ( A  /  4 ) ^
4 ) ) ) )  =  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^
3 ) ) )  +  ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) ) )
1192, 11, 1183eqtrd 2509 . . . . 5  |-  ( ph  ->  ( Y ^ 4 )  =  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^
3 ) ) )  +  ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) ) )
120119oveq1d 6323 . . . 4  |-  ( ph  ->  ( ( Y ^
4 )  +  ( P  x.  ( Y ^ 2 ) ) )  =  ( ( ( ( X ^
4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) ) )  +  ( P  x.  ( Y ^ 2 ) ) ) )
121 expcl 12328 . . . . . . 7  |-  ( ( X  e.  CC  /\  4  e.  NN0 )  -> 
( X ^ 4 )  e.  CC )
1223, 100, 121sylancl 675 . . . . . 6  |-  ( ph  ->  ( X ^ 4 )  e.  CC )
1234, 14mulcld 9681 . . . . . 6  |-  ( ph  ->  ( A  x.  ( X ^ 3 ) )  e.  CC )
124122, 123addcld 9680 . . . . 5  |-  ( ph  ->  ( ( X ^
4 )  +  ( A  x.  ( X ^ 3 ) ) )  e.  CC )
125 mulcl 9641 . . . . . . . 8  |-  ( ( ( 3  /  8
)  e.  CC  /\  ( A ^ 2 )  e.  CC )  -> 
( ( 3  / 
8 )  x.  ( A ^ 2 ) )  e.  CC )
12652, 43, 125sylancr 676 . . . . . . 7  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  e.  CC )
127126, 25mulcld 9681 . . . . . 6  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( X ^ 2 ) )  e.  CC )
12883, 88, 90divcld 10405 . . . . . . . . 9  |-  ( ph  ->  ( ( A ^
3 )  /  8
)  e.  CC )
129128halfcld 10880 . . . . . . . 8  |-  ( ph  ->  ( ( ( A ^ 3 )  / 
8 )  /  2
)  e.  CC )
130129, 3mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  e.  CC )
131 expcl 12328 . . . . . . . . 9  |-  ( ( A  e.  CC  /\  4  e.  NN0 )  -> 
( A ^ 4 )  e.  CC )
1324, 100, 131sylancl 675 . . . . . . . 8  |-  ( ph  ->  ( A ^ 4 )  e.  CC )
133 5nn0 10913 . . . . . . . . . . . 12  |-  5  e.  NN0
13474, 133deccl 11088 . . . . . . . . . . 11  |- ; 2 5  e.  NN0
135134, 21decnncl 11087 . . . . . . . . . 10  |- ;; 2 5 6  e.  NN
136135nncni 10641 . . . . . . . . 9  |- ;; 2 5 6  e.  CC
137136a1i 11 . . . . . . . 8  |-  ( ph  -> ;; 2 5 6  e.  CC )
138135nnne0i 10666 . . . . . . . . 9  |- ;; 2 5 6  =/=  0
139138a1i 11 . . . . . . . 8  |-  ( ph  -> ;; 2 5 6  =/=  0 )
140132, 137, 139divcld 10405 . . . . . . 7  |-  ( ph  ->  ( ( A ^
4 )  / ;; 2 5 6 )  e.  CC )
141130, 140addcld 9680 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  e.  CC )
142127, 141addcld 9680 . . . . 5  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( X ^ 2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  e.  CC )
143 quart1.b . . . . . . . 8  |-  ( ph  ->  B  e.  CC )
144 quart1.c . . . . . . . 8  |-  ( ph  ->  C  e.  CC )
145 quart1.d . . . . . . . 8  |-  ( ph  ->  D  e.  CC )
146 quart1.p . . . . . . . 8  |-  ( ph  ->  P  =  ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) ) )
147 quart1.q . . . . . . . 8  |-  ( ph  ->  Q  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A ^ 3 )  / 
8 ) ) )
148 quart1.r . . . . . . . 8  |-  ( ph  ->  R  =  ( ( D  -  ( ( C  x.  A )  /  4 ) )  +  ( ( ( ( A ^ 2 )  x.  B )  / ; 1 6 )  -  ( ( 3  / ;; 2 5 6 )  x.  ( A ^
4 ) ) ) ) )
1494, 143, 144, 145, 146, 147, 148quart1cl 23859 . . . . . . 7  |-  ( ph  ->  ( P  e.  CC  /\  Q  e.  CC  /\  R  e.  CC )
)
150149simp1d 1042 . . . . . 6  |-  ( ph  ->  P  e.  CC )
1513, 9addcld 9680 . . . . . . . 8  |-  ( ph  ->  ( X  +  ( A  /  4 ) )  e.  CC )
1521, 151eqeltrd 2549 . . . . . . 7  |-  ( ph  ->  Y  e.  CC )
153152sqcld 12452 . . . . . 6  |-  ( ph  ->  ( Y ^ 2 )  e.  CC )
154150, 153mulcld 9681 . . . . 5  |-  ( ph  ->  ( P  x.  ( Y ^ 2 ) )  e.  CC )
155124, 142, 154addassd 9683 . . . 4  |-  ( ph  ->  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( X ^ 2 ) )  +  ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) ) ) )  +  ( P  x.  ( Y ^ 2 ) ) )  =  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^
3 ) ) )  +  ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) ) ) )
156120, 155eqtrd 2505 . . 3  |-  ( ph  ->  ( ( Y ^
4 )  +  ( P  x.  ( Y ^ 2 ) ) )  =  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^
3 ) ) )  +  ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) ) ) )
157156oveq1d 6323 . 2  |-  ( ph  ->  ( ( ( Y ^ 4 )  +  ( P  x.  ( Y ^ 2 ) ) )  +  ( ( Q  x.  Y )  +  R ) )  =  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^
3 ) ) )  +  ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) ) )  +  ( ( Q  x.  Y )  +  R ) ) )
158142, 154addcld 9680 . . 3  |-  ( ph  ->  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) )  e.  CC )
159149simp2d 1043 . . . . 5  |-  ( ph  ->  Q  e.  CC )
160159, 152mulcld 9681 . . . 4  |-  ( ph  ->  ( Q  x.  Y
)  e.  CC )
161149simp3d 1044 . . . 4  |-  ( ph  ->  R  e.  CC )
162160, 161addcld 9680 . . 3  |-  ( ph  ->  ( ( Q  x.  Y )  +  R
)  e.  CC )
163124, 158, 162addassd 9683 . 2  |-  ( ph  ->  ( ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( X ^ 2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^ 2 ) ) ) )  +  ( ( Q  x.  Y )  +  R
) )  =  ( ( ( X ^
4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( X ^ 2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^ 2 ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) ) )
1641oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( Y ^ 2 )  =  ( ( X  +  ( A  /  4 ) ) ^ 2 ) )
165 binom2 12427 . . . . . . . . . . 11  |-  ( ( X  e.  CC  /\  ( A  /  4
)  e.  CC )  ->  ( ( X  +  ( A  / 
4 ) ) ^
2 )  =  ( ( ( X ^
2 )  +  ( 2  x.  ( X  x.  ( A  / 
4 ) ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) )
1663, 9, 165syl2anc 673 . . . . . . . . . 10  |-  ( ph  ->  ( ( X  +  ( A  /  4
) ) ^ 2 )  =  ( ( ( X ^ 2 )  +  ( 2  x.  ( X  x.  ( A  /  4
) ) ) )  +  ( ( A  /  4 ) ^
2 ) ) )
1673, 9mulcld 9681 . . . . . . . . . . . 12  |-  ( ph  ->  ( X  x.  ( A  /  4 ) )  e.  CC )
168 mulcl 9641 . . . . . . . . . . . 12  |-  ( ( 2  e.  CC  /\  ( X  x.  ( A  /  4 ) )  e.  CC )  -> 
( 2  x.  ( X  x.  ( A  /  4 ) ) )  e.  CC )
16928, 167, 168sylancr 676 . . . . . . . . . . 11  |-  ( ph  ->  ( 2  x.  ( X  x.  ( A  /  4 ) ) )  e.  CC )
17025, 169, 24addassd 9683 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( X ^ 2 )  +  ( 2  x.  ( X  x.  ( A  /  4 ) ) ) )  +  ( ( A  /  4
) ^ 2 ) )  =  ( ( X ^ 2 )  +  ( ( 2  x.  ( X  x.  ( A  /  4
) ) )  +  ( ( A  / 
4 ) ^ 2 ) ) ) )
171164, 166, 1703eqtrd 2509 . . . . . . . . 9  |-  ( ph  ->  ( Y ^ 2 )  =  ( ( X ^ 2 )  +  ( ( 2  x.  ( X  x.  ( A  /  4
) ) )  +  ( ( A  / 
4 ) ^ 2 ) ) ) )
172171oveq2d 6324 . . . . . . . 8  |-  ( ph  ->  ( P  x.  ( Y ^ 2 ) )  =  ( P  x.  ( ( X ^
2 )  +  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )
173169, 24addcld 9680 . . . . . . . . 9  |-  ( ph  ->  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) )  e.  CC )
174150, 25, 173adddid 9685 . . . . . . . 8  |-  ( ph  ->  ( P  x.  (
( X ^ 2 )  +  ( ( 2  x.  ( X  x.  ( A  / 
4 ) ) )  +  ( ( A  /  4 ) ^
2 ) ) ) )  =  ( ( P  x.  ( X ^ 2 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )
175172, 174eqtrd 2505 . . . . . . 7  |-  ( ph  ->  ( P  x.  ( Y ^ 2 ) )  =  ( ( P  x.  ( X ^
2 ) )  +  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )
176175oveq2d 6324 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) )  =  ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( ( P  x.  ( X ^ 2 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) ) )
177150, 25mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( P  x.  ( X ^ 2 ) )  e.  CC )
178150, 173mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) )  e.  CC )
179127, 141, 177, 178add4d 9878 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( ( P  x.  ( X ^ 2 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )  =  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( P  x.  ( X ^ 2 ) ) )  +  ( ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) ) )
180126, 150, 25adddird 9686 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  +  P )  x.  ( X ^ 2 ) )  =  ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( P  x.  ( X ^ 2 ) ) ) )
181146oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  +  P
)  =  ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  +  ( B  -  ( ( 3  / 
8 )  x.  ( A ^ 2 ) ) ) ) )
182126, 143pncan3d 10008 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  +  ( B  -  ( ( 3  /  8 )  x.  ( A ^
2 ) ) ) )  =  B )
183181, 182eqtrd 2505 . . . . . . . . 9  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  +  P
)  =  B )
184183oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  +  P )  x.  ( X ^ 2 ) )  =  ( B  x.  ( X ^ 2 ) ) )
185180, 184eqtr3d 2507 . . . . . . 7  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( X ^ 2 ) )  +  ( P  x.  ( X ^ 2 ) ) )  =  ( B  x.  ( X ^
2 ) ) )
186185oveq1d 6323 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( P  x.  ( X ^ 2 ) ) )  +  ( ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )  =  ( ( B  x.  ( X ^ 2 ) )  +  ( ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) ) )
187176, 179, 1863eqtrd 2509 . . . . 5  |-  ( ph  ->  ( ( ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) )  =  ( ( B  x.  ( X ^
2 ) )  +  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) ) )
188187oveq1d 6323 . . . 4  |-  ( ph  ->  ( ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) )  +  ( ( Q  x.  Y )  +  R ) )  =  ( ( ( B  x.  ( X ^
2 ) )  +  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )  +  ( ( Q  x.  Y )  +  R
) ) )
189143, 25mulcld 9681 . . . . 5  |-  ( ph  ->  ( B  x.  ( X ^ 2 ) )  e.  CC )
190141, 178addcld 9680 . . . . 5  |-  ( ph  ->  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) )  e.  CC )
191189, 190, 162addassd 9683 . . . 4  |-  ( ph  ->  ( ( ( B  x.  ( X ^
2 ) )  +  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) ) )  +  ( ( Q  x.  Y )  +  R
) )  =  ( ( B  x.  ( X ^ 2 ) )  +  ( ( ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) ) )
1924, 143mulcld 9681 . . . . . . . . . 10  |-  ( ph  ->  ( A  x.  B
)  e.  CC )
193192halfcld 10880 . . . . . . . . 9  |-  ( ph  ->  ( ( A  x.  B )  /  2
)  e.  CC )
194193, 128subcld 10005 . . . . . . . 8  |-  ( ph  ->  ( ( ( A  x.  B )  / 
2 )  -  (
( A ^ 3 )  /  8 ) )  e.  CC )
195194, 3mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) )  x.  X
)  e.  CC )
196150, 24mulcld 9681 . . . . . . . 8  |-  ( ph  ->  ( P  x.  (
( A  /  4
) ^ 2 ) )  e.  CC )
197140, 196addcld 9680 . . . . . . 7  |-  ( ph  ->  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) )  e.  CC )
198159, 3mulcld 9681 . . . . . . 7  |-  ( ph  ->  ( Q  x.  X
)  e.  CC )
199159, 9mulcld 9681 . . . . . . . 8  |-  ( ph  ->  ( Q  x.  ( A  /  4 ) )  e.  CC )
200199, 161addcld 9680 . . . . . . 7  |-  ( ph  ->  ( ( Q  x.  ( A  /  4
) )  +  R
)  e.  CC )
201195, 197, 198, 200add4d 9878 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) )  x.  X )  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  X )  +  ( ( Q  x.  ( A  /  4
) )  +  R
) ) )  =  ( ( ( ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) )  x.  X )  +  ( Q  x.  X
) )  +  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4
) )  +  R
) ) ) )
202150, 169, 24adddid 9685 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  (
( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) )  =  ( ( P  x.  ( 2  x.  ( X  x.  ( A  /  4
) ) ) )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) ) )
203202oveq2d 6324 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) )  =  ( ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( ( P  x.  ( 2  x.  ( X  x.  ( A  /  4 ) ) ) )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) ) ) )
204150, 169mulcld 9681 . . . . . . . . 9  |-  ( ph  ->  ( P  x.  (
2  x.  ( X  x.  ( A  / 
4 ) ) ) )  e.  CC )
205130, 140, 204, 196add4d 9878 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( ( P  x.  ( 2  x.  ( X  x.  ( A  /  4 ) ) ) )  +  ( P  x.  ( ( A  /  4 ) ^ 2 ) ) ) )  =  ( ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( P  x.  ( 2  x.  ( X  x.  ( A  /  4
) ) ) ) )  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) )
2064, 89, 89, 92, 92divdiv1d 10436 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( A  / 
2 )  /  2
)  =  ( A  /  ( 2  x.  2 ) ) )
207 2t2e4 10782 . . . . . . . . . . . . . . . . . . 19  |-  ( 2  x.  2 )  =  4
208207oveq2i 6319 . . . . . . . . . . . . . . . . . 18  |-  ( A  /  ( 2  x.  2 ) )  =  ( A  /  4
)
209206, 208syl6eq 2521 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( A  / 
2 )  /  2
)  =  ( A  /  4 ) )
210209oveq2d 6324 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  (
( A  /  2
)  /  2 ) )  =  ( 2  x.  ( A  / 
4 ) ) )
2114halfcld 10880 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( A  /  2
)  e.  CC )
212211, 89, 92divcan2d 10407 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  (
( A  /  2
)  /  2 ) )  =  ( A  /  2 ) )
213210, 212eqtr3d 2507 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( 2  x.  ( A  /  4 ) )  =  ( A  / 
2 ) )
214213oveq2d 6324 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  x.  (
2  x.  ( A  /  4 ) ) )  =  ( X  x.  ( A  / 
2 ) ) )
2153, 211mulcomd 9682 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( X  x.  ( A  /  2 ) )  =  ( ( A  /  2 )  x.  X ) )
216214, 215eqtrd 2505 . . . . . . . . . . . . 13  |-  ( ph  ->  ( X  x.  (
2  x.  ( A  /  4 ) ) )  =  ( ( A  /  2 )  x.  X ) )
217216oveq2d 6324 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  ( X  x.  ( 2  x.  ( A  / 
4 ) ) ) )  =  ( P  x.  ( ( A  /  2 )  x.  X ) ) )
21889, 3, 9mul12d 9860 . . . . . . . . . . . . 13  |-  ( ph  ->  ( 2  x.  ( X  x.  ( A  /  4 ) ) )  =  ( X  x.  ( 2  x.  ( A  /  4
) ) ) )
219218oveq2d 6324 . . . . . . . . . . . 12  |-  ( ph  ->  ( P  x.  (
2  x.  ( X  x.  ( A  / 
4 ) ) ) )  =  ( P  x.  ( X  x.  ( 2  x.  ( A  /  4 ) ) ) ) )
220150, 211, 3mulassd 9684 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( P  x.  ( A  /  2
) )  x.  X
)  =  ( P  x.  ( ( A  /  2 )  x.  X ) ) )
221217, 219, 2203eqtr4d 2515 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  (
2  x.  ( X  x.  ( A  / 
4 ) ) ) )  =  ( ( P  x.  ( A  /  2 ) )  x.  X ) )
222221oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( P  x.  ( 2  x.  ( X  x.  ( A  /  4
) ) ) ) )  =  ( ( ( ( ( A ^ 3 )  / 
8 )  /  2
)  x.  X )  +  ( ( P  x.  ( A  / 
2 ) )  x.  X ) ) )
223150, 211mulcld 9681 . . . . . . . . . . 11  |-  ( ph  ->  ( P  x.  ( A  /  2 ) )  e.  CC )
224129, 223, 3adddird 9686 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  +  ( P  x.  ( A  /  2 ) ) )  x.  X )  =  ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( P  x.  ( A  /  2
) )  x.  X
) ) )
225146oveq1d 6323 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( P  x.  ( A  /  2 ) )  =  ( ( B  -  ( ( 3  /  8 )  x.  ( A ^ 2 ) ) )  x.  ( A  /  2
) ) )
226143, 126, 211subdird 10096 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  -  ( ( 3  / 
8 )  x.  ( A ^ 2 ) ) )  x.  ( A  /  2 ) )  =  ( ( B  x.  ( A  / 
2 ) )  -  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( A  /  2 ) ) ) )
227143, 4, 89, 92divassd 10440 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( B  x.  A )  /  2
)  =  ( B  x.  ( A  / 
2 ) ) )
228143, 4mulcomd 9682 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( B  x.  A
)  =  ( A  x.  B ) )
229228oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( B  x.  A )  /  2
)  =  ( ( A  x.  B )  /  2 ) )
230227, 229eqtr3d 2507 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( B  x.  ( A  /  2 ) )  =  ( ( A  x.  B )  / 
2 ) )
23172oveq2i 6319 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A ^ 3 )  =  ( A ^ (
2  +  1 ) )
232 expp1 12317 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( A  e.  CC  /\  2  e.  NN0 )  -> 
( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
2334, 74, 232sylancl 675 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ph  ->  ( A ^ (
2  +  1 ) )  =  ( ( A ^ 2 )  x.  A ) )
234231, 233syl5eq 2517 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( A ^ 3 )  =  ( ( A ^ 2 )  x.  A ) )
235234oveq2d 6324 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 3  / 
8 )  x.  ( A ^ 3 ) )  =  ( ( 3  /  8 )  x.  ( ( A ^
2 )  x.  A
) ) )
23627a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  3  e.  CC )
237236, 83, 88, 90div23d 10442 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( 3  x.  ( A ^ 3 ) )  /  8
)  =  ( ( 3  /  8 )  x.  ( A ^
3 ) ) )
23852a1i 11 . . . . . . . . . . . . . . . . . . . 20  |-  ( ph  ->  ( 3  /  8
)  e.  CC )
239238, 43, 4mulassd 9684 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  A
)  =  ( ( 3  /  8 )  x.  ( ( A ^ 2 )  x.  A ) ) )
240235, 237, 2393eqtr4rd 2516 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  A
)  =  ( ( 3  x.  ( A ^ 3 ) )  /  8 ) )
241236, 83, 88, 90divassd 10440 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( ( 3  x.  ( A ^ 3 ) )  /  8
)  =  ( 3  x.  ( ( A ^ 3 )  / 
8 ) ) )
242240, 241eqtrd 2505 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  A
)  =  ( 3  x.  ( ( A ^ 3 )  / 
8 ) ) )
243242oveq1d 6323 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  A )  /  2
)  =  ( ( 3  x.  ( ( A ^ 3 )  /  8 ) )  /  2 ) )
244126, 4, 89, 92divassd 10440 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  A )  /  2
)  =  ( ( ( 3  /  8
)  x.  ( A ^ 2 ) )  x.  ( A  / 
2 ) ) )
245236, 128, 89, 92divassd 10440 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 3  x.  ( ( A ^
3 )  /  8
) )  /  2
)  =  ( 3  x.  ( ( ( A ^ 3 )  /  8 )  / 
2 ) ) )
246243, 244, 2453eqtr3d 2513 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( ( 3  /  8 )  x.  ( A ^ 2 ) )  x.  ( A  /  2 ) )  =  ( 3  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) ) )
247230, 246oveq12d 6326 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( B  x.  ( A  /  2
) )  -  (
( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( A  / 
2 ) ) )  =  ( ( ( A  x.  B )  /  2 )  -  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) ) ) )
248225, 226, 2473eqtrd 2509 . . . . . . . . . . . . 13  |-  ( ph  ->  ( P  x.  ( A  /  2 ) )  =  ( ( ( A  x.  B )  /  2 )  -  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) ) ) )
249248oveq2d 6324 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  +  ( P  x.  ( A  /  2 ) ) )  =  ( ( ( ( A ^
3 )  /  8
)  /  2 )  +  ( ( ( A  x.  B )  /  2 )  -  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) ) ) ) )
250 mulcl 9641 . . . . . . . . . . . . . . 15  |-  ( ( 3  e.  CC  /\  ( ( ( A ^ 3 )  / 
8 )  /  2
)  e.  CC )  ->  ( 3  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) )  e.  CC )
25127, 129, 250sylancr 676 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  e.  CC )
252129, 193, 251addsub12d 10028 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  +  ( ( ( A  x.  B )  /  2
)  -  ( 3  x.  ( ( ( A ^ 3 )  /  8 )  / 
2 ) ) ) )  =  ( ( ( A  x.  B
)  /  2 )  +  ( ( ( ( A ^ 3 )  /  8 )  /  2 )  -  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) ) ) ) )
253193, 251, 129subsub2d 10034 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  x.  B )  / 
2 )  -  (
( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  -  ( ( ( A ^ 3 )  /  8 )  /  2 ) ) )  =  ( ( ( A  x.  B
)  /  2 )  +  ( ( ( ( A ^ 3 )  /  8 )  /  2 )  -  ( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) ) ) ) )
254129mulid2d 9679 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 1  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  =  ( ( ( A ^ 3 )  /  8 )  /  2 ) )
255254oveq2d 6324 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) )  -  (
1  x.  ( ( ( A ^ 3 )  /  8 )  /  2 ) ) )  =  ( ( 3  x.  ( ( ( A ^ 3 )  /  8 )  /  2 ) )  -  ( ( ( A ^ 3 )  /  8 )  / 
2 ) ) )
256 3m1e2 10748 . . . . . . . . . . . . . . . . 17  |-  ( 3  -  1 )  =  2
257256oveq1i 6318 . . . . . . . . . . . . . . . 16  |-  ( ( 3  -  1 )  x.  ( ( ( A ^ 3 )  /  8 )  / 
2 ) )  =  ( 2  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )
258 1cnd 9677 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  1  e.  CC )
259236, 258, 129subdird 10096 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( ( 3  -  1 )  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  =  ( ( 3  x.  ( ( ( A ^ 3 )  /  8 )  /  2 ) )  -  ( 1  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) ) ) )
260128, 89, 92divcan2d 10407 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  ( 2  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  =  ( ( A ^ 3 )  /  8 ) )
261257, 259, 2603eqtr3a 2529 . . . . . . . . . . . . . . 15  |-  ( ph  ->  ( ( 3  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) )  -  (
1  x.  ( ( ( A ^ 3 )  /  8 )  /  2 ) ) )  =  ( ( A ^ 3 )  /  8 ) )
262255, 261eqtr3d 2507 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( ( 3  x.  ( ( ( A ^ 3 )  / 
8 )  /  2
) )  -  (
( ( A ^
3 )  /  8
)  /  2 ) )  =  ( ( A ^ 3 )  /  8 ) )
263262oveq2d 6324 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( ( A  x.  B )  / 
2 )  -  (
( 3  x.  (
( ( A ^
3 )  /  8
)  /  2 ) )  -  ( ( ( A ^ 3 )  /  8 )  /  2 ) ) )  =  ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) ) )
264252, 253, 2633eqtr2d 2511 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  +  ( ( ( A  x.  B )  /  2
)  -  ( 3  x.  ( ( ( A ^ 3 )  /  8 )  / 
2 ) ) ) )  =  ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) ) )
265249, 264eqtrd 2505 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  +  ( P  x.  ( A  /  2 ) ) )  =  ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) ) )
266265oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  +  ( P  x.  ( A  /  2 ) ) )  x.  X )  =  ( ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) )  x.  X ) )
267222, 224, 2663eqtr2d 2511 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( P  x.  ( 2  x.  ( X  x.  ( A  /  4
) ) ) ) )  =  ( ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) )  x.  X ) )
268267oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( P  x.  (
2  x.  ( X  x.  ( A  / 
4 ) ) ) ) )  +  ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) )  =  ( ( ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) )  x.  X )  +  ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) )
269203, 205, 2683eqtrd 2509 . . . . . . 7  |-  ( ph  ->  ( ( ( ( ( ( A ^
3 )  /  8
)  /  2 )  x.  X )  +  ( ( A ^
4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) )  =  ( ( ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) )  x.  X
)  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) ) ) )
2701oveq2d 6324 . . . . . . . . . 10  |-  ( ph  ->  ( Q  x.  Y
)  =  ( Q  x.  ( X  +  ( A  /  4
) ) ) )
271159, 3, 9adddid 9685 . . . . . . . . . 10  |-  ( ph  ->  ( Q  x.  ( X  +  ( A  /  4 ) ) )  =  ( ( Q  x.  X )  +  ( Q  x.  ( A  /  4
) ) ) )
272270, 271eqtrd 2505 . . . . . . . . 9  |-  ( ph  ->  ( Q  x.  Y
)  =  ( ( Q  x.  X )  +  ( Q  x.  ( A  /  4
) ) ) )
273272oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( Q  x.  Y )  +  R
)  =  ( ( ( Q  x.  X
)  +  ( Q  x.  ( A  / 
4 ) ) )  +  R ) )
274198, 199, 161addassd 9683 . . . . . . . 8  |-  ( ph  ->  ( ( ( Q  x.  X )  +  ( Q  x.  ( A  /  4 ) ) )  +  R )  =  ( ( Q  x.  X )  +  ( ( Q  x.  ( A  /  4
) )  +  R
) ) )
275273, 274eqtrd 2505 . . . . . . 7  |-  ( ph  ->  ( ( Q  x.  Y )  +  R
)  =  ( ( Q  x.  X )  +  ( ( Q  x.  ( A  / 
4 ) )  +  R ) ) )
276269, 275oveq12d 6326 . . . . . 6  |-  ( ph  ->  ( ( ( ( ( ( ( A ^ 3 )  / 
8 )  /  2
)  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4
) ) )  +  ( ( A  / 
4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  Y )  +  R ) )  =  ( ( ( ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) )  x.  X )  +  ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  ( ( A  / 
4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  X )  +  ( ( Q  x.  ( A  /  4
) )  +  R
) ) ) )
277194, 159addcomd 9853 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) )  +  Q
)  =  ( Q  +  ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) ) ) )
278147oveq1d 6323 . . . . . . . . . 10  |-  ( ph  ->  ( Q  +  ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) ) )  =  ( ( ( C  -  (
( A  x.  B
)  /  2 ) )  +  ( ( A ^ 3 )  /  8 ) )  +  ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) ) ) )
279144, 193subcld 10005 . . . . . . . . . . . 12  |-  ( ph  ->  ( C  -  (
( A  x.  B
)  /  2 ) )  e.  CC )
280279, 128, 193ppncand 10045 . . . . . . . . . . 11  |-  ( ph  ->  ( ( ( C  -  ( ( A  x.  B )  / 
2 ) )  +  ( ( A ^
3 )  /  8
) )  +  ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) ) )  =  ( ( C  -  ( ( A  x.  B )  /  2 ) )  +  ( ( A  x.  B )  / 
2 ) ) )
281144, 193npcand 10009 . . . . . . . . . . 11  |-  ( ph  ->  ( ( C  -  ( ( A  x.  B )  /  2
) )  +  ( ( A  x.  B
)  /  2 ) )  =  C )
282280, 281eqtrd 2505 . . . . . . . . . 10  |-  ( ph  ->  ( ( ( C  -  ( ( A  x.  B )  / 
2 ) )  +  ( ( A ^
3 )  /  8
) )  +  ( ( ( A  x.  B )  /  2
)  -  ( ( A ^ 3 )  /  8 ) ) )  =  C )
283277, 278, 2823eqtrd 2509 . . . . . . . . 9  |-  ( ph  ->  ( ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) )  +  Q
)  =  C )
284283oveq1d 6323 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) )  +  Q )  x.  X
)  =  ( C  x.  X ) )
285194, 159, 3adddird 9686 . . . . . . . 8  |-  ( ph  ->  ( ( ( ( ( A  x.  B
)  /  2 )  -  ( ( A ^ 3 )  / 
8 ) )  +  Q )  x.  X
)  =  ( ( ( ( ( A  x.  B )  / 
2 )  -  (
( A ^ 3 )  /  8 ) )  x.  X )  +  ( Q  x.  X ) ) )
286284, 285eqtr3d 2507 . . . . . . 7  |-  ( ph  ->  ( C  x.  X
)  =  ( ( ( ( ( A  x.  B )  / 
2 )  -  (
( A ^ 3 )  /  8 ) )  x.  X )  +  ( Q  x.  X ) ) )
2874, 143, 144, 145, 146, 147, 148, 3, 1quart1lem 23860 . . . . . . 7  |-  ( ph  ->  D  =  ( ( ( ( A ^
4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4 ) )  +  R ) ) )
288286, 287oveq12d 6326 . . . . . 6  |-  ( ph  ->  ( ( C  x.  X )  +  D
)  =  ( ( ( ( ( ( A  x.  B )  /  2 )  -  ( ( A ^
3 )  /  8
) )  x.  X
)  +  ( Q  x.  X ) )  +  ( ( ( ( A ^ 4 )  / ;; 2 5 6 )  +  ( P  x.  (
( A  /  4
) ^ 2 ) ) )  +  ( ( Q  x.  ( A  /  4 ) )  +  R ) ) ) )
289201, 276, 2883eqtr4d 2515 . . . . 5  |-  ( ph  ->  ( ( ( ( ( ( ( A ^ 3 )  / 
8 )  /  2
)  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4
) ) )  +  ( ( A  / 
4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  Y )  +  R ) )  =  ( ( C  x.  X )  +  D
) )
290289oveq2d 6324 . . . 4  |-  ( ph  ->  ( ( B  x.  ( X ^ 2 ) )  +  ( ( ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) )  +  ( P  x.  ( ( 2  x.  ( X  x.  ( A  /  4 ) ) )  +  ( ( A  /  4 ) ^ 2 ) ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) )  =  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )
291188, 191, 2903eqtrd 2509 . . 3  |-  ( ph  ->  ( ( ( ( ( ( 3  / 
8 )  x.  ( A ^ 2 ) )  x.  ( X ^
2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  /  2 )  x.  X )  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^
2 ) ) )  +  ( ( Q  x.  Y )  +  R ) )  =  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )
292291oveq2d 6324 . 2  |-  ( ph  ->  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( ( ( ( ( 3  /  8 )  x.  ( A ^
2 ) )  x.  ( X ^ 2 ) )  +  ( ( ( ( ( A ^ 3 )  /  8 )  / 
2 )  x.  X
)  +  ( ( A ^ 4 )  / ;; 2 5 6 ) ) )  +  ( P  x.  ( Y ^ 2 ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) )  =  ( ( ( X ^
4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) ) )
293157, 163, 2923eqtrrd 2510 1  |-  ( ph  ->  ( ( ( X ^ 4 )  +  ( A  x.  ( X ^ 3 ) ) )  +  ( ( B  x.  ( X ^ 2 ) )  +  ( ( C  x.  X )  +  D ) ) )  =  ( ( ( Y ^ 4 )  +  ( P  x.  ( Y ^ 2 ) ) )  +  ( ( Q  x.  Y
)  +  R ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904    =/= wne 2641  (class class class)co 6308   CCcc 9555   0cc0 9557   1c1 9558    + caddc 9560    x. cmul 9562    - cmin 9880    / cdiv 10291   2c2 10681   3c3 10682   4c4 10683   5c5 10684   6c6 10685   8c8 10687   NN0cn0 10893  ;cdc 11074   ^cexp 12310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-cnex 9613  ax-resscn 9614  ax-1cn 9615  ax-icn 9616  ax-addcl 9617  ax-addrcl 9618  ax-mulcl 9619  ax-mulrcl 9620  ax-mulcom 9621  ax-addass 9622  ax-mulass 9623  ax-distr 9624  ax-i2m1 9625  ax-1ne0 9626  ax-1rid 9627  ax-rnegex 9628  ax-rrecex 9629  ax-cnre 9630  ax-pre-lttri 9631  ax-pre-lttrn 9632  ax-pre-ltadd 9633  ax-pre-mulgt0 9634
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-nel 2644  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-2nd 6813  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-er 7381  df-en 7588  df-dom 7589  df-sdom 7590  df-pnf 9695  df-mnf 9696  df-xr 9697  df-ltxr 9698  df-le 9699  df-sub 9882  df-neg 9883  df-div 10292  df-nn 10632  df-2 10690  df-3 10691  df-4 10692  df-5 10693  df-6 10694  df-7 10695  df-8 10696  df-9 10697  df-10 10698  df-n0 10894  df-z 10962  df-dec 11075  df-uz 11183  df-seq 12252  df-exp 12311
This theorem is referenced by:  quart  23866
  Copyright terms: Public domain W3C validator