MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Unicode version

Theorem qtopuni 19938
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopuni  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F )
)

Proof of Theorem qtopuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssid 3523 . . . . 5  |-  Y  C_  Y
21a1i 11 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  C_  Y
)
3 fof 5793 . . . . . . 7  |-  ( F : X -onto-> Y  ->  F : X --> Y )
43adantl 466 . . . . . 6  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  F : X --> Y )
5 fimacnv 6011 . . . . . 6  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
64, 5syl 16 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( `' F " Y )  =  X )
7 qtoptop.1 . . . . . . 7  |-  X  = 
U. J
87topopn 19182 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
98adantr 465 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  X  e.  J
)
106, 9eqeltrd 2555 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( `' F " Y )  e.  J
)
117elqtop2 19937 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( Y  e.  ( J qTop  F )  <-> 
( Y  C_  Y  /\  ( `' F " Y )  e.  J
) ) )
122, 10, 11mpbir2and 920 . . 3  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  e.  ( J qTop  F ) )
13 elssuni 4275 . . 3  |-  ( Y  e.  ( J qTop  F
)  ->  Y  C_  U. ( J qTop  F ) )
1412, 13syl 16 . 2  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  C_  U. ( J qTop  F ) )
157elqtop2 19937 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( x  e.  ( J qTop  F )  <-> 
( x  C_  Y  /\  ( `' F "
x )  e.  J
) ) )
16 simpl 457 . . . . . 6  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  C_  Y )
17 selpw 4017 . . . . . 6  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1816, 17sylibr 212 . . . . 5  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  e.  ~P Y
)
1915, 18syl6bi 228 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( x  e.  ( J qTop  F )  ->  x  e.  ~P Y ) )
2019ssrdv 3510 . . 3  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( J qTop  F
)  C_  ~P Y
)
21 sspwuni 4411 . . 3  |-  ( ( J qTop  F )  C_  ~P Y  <->  U. ( J qTop  F
)  C_  Y )
2220, 21sylib 196 . 2  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  U. ( J qTop  F
)  C_  Y )
2314, 22eqssd 3521 1  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    C_ wss 3476   ~Pcpw 4010   U.cuni 4245   `'ccnv 4998   "cima 5002   -->wf 5582   -onto->wfo 5584  (class class class)co 6282   qTop cqtop 14754   Topctop 19161
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2819  df-rex 2820  df-reu 2821  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-op 4034  df-uni 4246  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-id 4795  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-qtop 14758  df-top 19166
This theorem is referenced by:  qtoptopon  19940  qtopcmplem  19943  qtopkgen  19946  qtopt1  27636  qtophaus  27637  circtopn  27638
  Copyright terms: Public domain W3C validator