MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopuni Structured version   Unicode version

Theorem qtopuni 19400
Description: The base set of the quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Hypothesis
Ref Expression
qtoptop.1  |-  X  = 
U. J
Assertion
Ref Expression
qtopuni  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F )
)

Proof of Theorem qtopuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ssid 3476 . . . . 5  |-  Y  C_  Y
21a1i 11 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  C_  Y
)
3 fof 5721 . . . . . . 7  |-  ( F : X -onto-> Y  ->  F : X --> Y )
43adantl 466 . . . . . 6  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  F : X --> Y )
5 fimacnv 5937 . . . . . 6  |-  ( F : X --> Y  -> 
( `' F " Y )  =  X )
64, 5syl 16 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( `' F " Y )  =  X )
7 qtoptop.1 . . . . . . 7  |-  X  = 
U. J
87topopn 18644 . . . . . 6  |-  ( J  e.  Top  ->  X  e.  J )
98adantr 465 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  X  e.  J
)
106, 9eqeltrd 2539 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( `' F " Y )  e.  J
)
117elqtop2 19399 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( Y  e.  ( J qTop  F )  <-> 
( Y  C_  Y  /\  ( `' F " Y )  e.  J
) ) )
122, 10, 11mpbir2and 913 . . 3  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  e.  ( J qTop  F ) )
13 elssuni 4222 . . 3  |-  ( Y  e.  ( J qTop  F
)  ->  Y  C_  U. ( J qTop  F ) )
1412, 13syl 16 . 2  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  C_  U. ( J qTop  F ) )
157elqtop2 19399 . . . . 5  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( x  e.  ( J qTop  F )  <-> 
( x  C_  Y  /\  ( `' F "
x )  e.  J
) ) )
16 simpl 457 . . . . . 6  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  C_  Y )
17 selpw 3968 . . . . . 6  |-  ( x  e.  ~P Y  <->  x  C_  Y
)
1816, 17sylibr 212 . . . . 5  |-  ( ( x  C_  Y  /\  ( `' F " x )  e.  J )  ->  x  e.  ~P Y
)
1915, 18syl6bi 228 . . . 4  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( x  e.  ( J qTop  F )  ->  x  e.  ~P Y ) )
2019ssrdv 3463 . . 3  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  ( J qTop  F
)  C_  ~P Y
)
21 sspwuni 4357 . . 3  |-  ( ( J qTop  F )  C_  ~P Y  <->  U. ( J qTop  F
)  C_  Y )
2220, 21sylib 196 . 2  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  U. ( J qTop  F
)  C_  Y )
2314, 22eqssd 3474 1  |-  ( ( J  e.  Top  /\  F : X -onto-> Y )  ->  Y  =  U. ( J qTop  F )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    C_ wss 3429   ~Pcpw 3961   U.cuni 4192   `'ccnv 4940   "cima 4944   -->wf 5515   -onto->wfo 5517  (class class class)co 6193   qTop cqtop 14552   Topctop 18623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-qtop 14556  df-top 18628
This theorem is referenced by:  qtoptopon  19402  qtopcmplem  19405  qtopkgen  19408
  Copyright terms: Public domain W3C validator