MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoptop2 Structured version   Unicode version

Theorem qtoptop2 20066
Description: The quotient topology is a topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtoptop2  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( J qTop  F )  e.  Top )

Proof of Theorem qtoptop2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2467 . . . 4  |-  U. J  =  U. J
21qtopres 20065 . . 3  |-  ( F  e.  V  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  U. J ) ) )
323ad2ant2 1018 . 2  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( J qTop  F )  =  ( J qTop  ( F  |`  U. J ) ) )
4 simp1 996 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  J  e.  Top )
5 funres 5633 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  Fun  ( F  |`  U. J ) )
653ad2ant3 1019 . . . . . . . . . . . . . 14  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  Fun  ( F  |`  U. J
) )
7 funforn 5808 . . . . . . . . . . . . . 14  |-  ( Fun  ( F  |`  U. J
)  <->  ( F  |`  U. J ) : dom  ( F  |`  U. J
) -onto-> ran  ( F  |`  U. J ) )
86, 7sylib 196 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( F  |`  U. J ) : dom  ( F  |`  U. J ) -onto-> ran  ( F  |`  U. J
) )
9 dmres 5300 . . . . . . . . . . . . . . 15  |-  dom  ( F  |`  U. J )  =  ( U. J  i^i  dom  F )
10 inss1 3723 . . . . . . . . . . . . . . 15  |-  ( U. J  i^i  dom  F )  C_ 
U. J
119, 10eqsstri 3539 . . . . . . . . . . . . . 14  |-  dom  ( F  |`  U. J ) 
C_  U. J
1211a1i 11 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  dom  ( F  |`  U. J
)  C_  U. J )
131elqtop 20064 . . . . . . . . . . . . 13  |-  ( ( J  e.  Top  /\  ( F  |`  U. J
) : dom  ( F  |`  U. J )
-onto->
ran  ( F  |`  U. J )  /\  dom  ( F  |`  U. J
)  C_  U. J )  ->  ( y  e.  ( J qTop  ( F  |`  U. J ) )  <-> 
( y  C_  ran  ( F  |`  U. J
)  /\  ( `' ( F  |`  U. J
) " y )  e.  J ) ) )
144, 8, 12, 13syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
y  e.  ( J qTop  ( F  |`  U. J
) )  <->  ( y  C_ 
ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " y
)  e.  J ) ) )
1514simprbda 623 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) )  ->  y  C_  ran  ( F  |`  U. J
) )
16 selpw 4023 . . . . . . . . . . 11  |-  ( y  e.  ~P ran  ( F  |`  U. J )  <-> 
y  C_  ran  ( F  |`  U. J ) )
1715, 16sylibr 212 . . . . . . . . . 10  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) )  ->  y  e.  ~P ran  ( F  |`  U. J ) )
1817ex 434 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
y  e.  ( J qTop  ( F  |`  U. J
) )  ->  y  e.  ~P ran  ( F  |`  U. J ) ) )
1918ssrdv 3515 . . . . . . . 8  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( J qTop  ( F  |`  U. J
) )  C_  ~P ran  ( F  |`  U. J
) )
20 sstr2 3516 . . . . . . . 8  |-  ( x 
C_  ( J qTop  ( F  |`  U. J ) )  ->  ( ( J qTop  ( F  |`  U. J
) )  C_  ~P ran  ( F  |`  U. J
)  ->  x  C_  ~P ran  ( F  |`  U. J
) ) )
2119, 20syl5com 30 . . . . . . 7  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  C_  ( J qTop  ( F  |`  U. J
) )  ->  x  C_ 
~P ran  ( F  |` 
U. J ) ) )
22 sspwuni 4417 . . . . . . 7  |-  ( x 
C_  ~P ran  ( F  |`  U. J )  <->  U. x  C_ 
ran  ( F  |`  U. J ) )
2321, 22syl6ib 226 . . . . . 6  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  C_  ( J qTop  ( F  |`  U. J
) )  ->  U. x  C_ 
ran  ( F  |`  U. J ) ) )
24 imauni 6157 . . . . . . . 8  |-  ( `' ( F  |`  U. J
) " U. x
)  =  U_ y  e.  x  ( `' ( F  |`  U. J
) " y )
25 simpl1 999 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  x  C_  ( J qTop  ( F  |`  U. J ) ) )  ->  J  e.  Top )
2614simplbda 624 . . . . . . . . . . 11  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) )  ->  ( `' ( F  |`  U. J
) " y )  e.  J )
2726ralrimiva 2881 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  A. y  e.  ( J qTop  ( F  |`  U. J ) ) ( `' ( F  |`  U. J ) "
y )  e.  J
)
28 ssralv 3569 . . . . . . . . . 10  |-  ( x 
C_  ( J qTop  ( F  |`  U. J ) )  ->  ( A. y  e.  ( J qTop  ( F  |`  U. J
) ) ( `' ( F  |`  U. J
) " y )  e.  J  ->  A. y  e.  x  ( `' ( F  |`  U. J
) " y )  e.  J ) )
2927, 28mpan9 469 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  x  C_  ( J qTop  ( F  |`  U. J ) ) )  ->  A. y  e.  x  ( `' ( F  |`  U. J
) " y )  e.  J )
30 iunopn 19274 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  A. y  e.  x  ( `' ( F  |`  U. J ) " y
)  e.  J )  ->  U_ y  e.  x  ( `' ( F  |`  U. J ) " y
)  e.  J )
3125, 29, 30syl2anc 661 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  x  C_  ( J qTop  ( F  |`  U. J ) ) )  ->  U_ y  e.  x  ( `' ( F  |`  U. J )
" y )  e.  J )
3224, 31syl5eqel 2559 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  x  C_  ( J qTop  ( F  |`  U. J ) ) )  ->  ( `' ( F  |`  U. J
) " U. x
)  e.  J )
3332ex 434 . . . . . 6  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  C_  ( J qTop  ( F  |`  U. J
) )  ->  ( `' ( F  |`  U. J ) " U. x )  e.  J
) )
3423, 33jcad 533 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  C_  ( J qTop  ( F  |`  U. J
) )  ->  ( U. x  C_  ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J )
" U. x )  e.  J ) ) )
351elqtop 20064 . . . . . 6  |-  ( ( J  e.  Top  /\  ( F  |`  U. J
) : dom  ( F  |`  U. J )
-onto->
ran  ( F  |`  U. J )  /\  dom  ( F  |`  U. J
)  C_  U. J )  ->  ( U. x  e.  ( J qTop  ( F  |`  U. J ) )  <-> 
( U. x  C_  ran  ( F  |`  U. J
)  /\  ( `' ( F  |`  U. J
) " U. x
)  e.  J ) ) )
364, 8, 12, 35syl3anc 1228 . . . . 5  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( U. x  e.  ( J qTop  ( F  |`  U. J
) )  <->  ( U. x  C_  ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " U. x )  e.  J
) ) )
3734, 36sylibrd 234 . . . 4  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  C_  ( J qTop  ( F  |`  U. J
) )  ->  U. x  e.  ( J qTop  ( F  |`  U. J ) ) ) )
3837alrimiv 1695 . . 3  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  A. x
( x  C_  ( J qTop  ( F  |`  U. J
) )  ->  U. x  e.  ( J qTop  ( F  |`  U. J ) ) ) )
39 inss1 3723 . . . . . 6  |-  ( x  i^i  y )  C_  x
401elqtop 20064 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  ( F  |`  U. J
) : dom  ( F  |`  U. J )
-onto->
ran  ( F  |`  U. J )  /\  dom  ( F  |`  U. J
)  C_  U. J )  ->  ( x  e.  ( J qTop  ( F  |`  U. J ) )  <-> 
( x  C_  ran  ( F  |`  U. J
)  /\  ( `' ( F  |`  U. J
) " x )  e.  J ) ) )
414, 8, 12, 40syl3anc 1228 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
x  e.  ( J qTop  ( F  |`  U. J
) )  <->  ( x  C_ 
ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " x
)  e.  J ) ) )
4241biimpa 484 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  x  e.  ( J qTop  ( F  |`  U. J ) ) )  ->  ( x  C_ 
ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " x
)  e.  J ) )
4342adantrr 716 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  (
x  C_  ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " x
)  e.  J ) )
4443simpld 459 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  x  C_ 
ran  ( F  |`  U. J ) )
4539, 44syl5ss 3520 . . . . 5  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  (
x  i^i  y )  C_ 
ran  ( F  |`  U. J ) )
466adantr 465 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  Fun  ( F  |`  U. J
) )
47 inpreima 6015 . . . . . . 7  |-  ( Fun  ( F  |`  U. J
)  ->  ( `' ( F  |`  U. J
) " ( x  i^i  y ) )  =  ( ( `' ( F  |`  U. J
) " x )  i^i  ( `' ( F  |`  U. J )
" y ) ) )
4846, 47syl 16 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  ( `' ( F  |`  U. J ) " (
x  i^i  y )
)  =  ( ( `' ( F  |`  U. J ) " x
)  i^i  ( `' ( F  |`  U. J
) " y ) ) )
494adantr 465 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  J  e.  Top )
5043simprd 463 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  ( `' ( F  |`  U. J ) " x
)  e.  J )
5126adantrl 715 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  ( `' ( F  |`  U. J ) " y
)  e.  J )
52 inopn 19275 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( `' ( F  |`  U. J ) " x
)  e.  J  /\  ( `' ( F  |`  U. J ) " y
)  e.  J )  ->  ( ( `' ( F  |`  U. J
) " x )  i^i  ( `' ( F  |`  U. J )
" y ) )  e.  J )
5349, 50, 51, 52syl3anc 1228 . . . . . 6  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  (
( `' ( F  |`  U. J ) "
x )  i^i  ( `' ( F  |`  U. J ) " y
) )  e.  J
)
5448, 53eqeltrd 2555 . . . . 5  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  ( `' ( F  |`  U. J ) " (
x  i^i  y )
)  e.  J )
551elqtop 20064 . . . . . . 7  |-  ( ( J  e.  Top  /\  ( F  |`  U. J
) : dom  ( F  |`  U. J )
-onto->
ran  ( F  |`  U. J )  /\  dom  ( F  |`  U. J
)  C_  U. J )  ->  ( ( x  i^i  y )  e.  ( J qTop  ( F  |`  U. J ) )  <-> 
( ( x  i^i  y )  C_  ran  ( F  |`  U. J
)  /\  ( `' ( F  |`  U. J
) " ( x  i^i  y ) )  e.  J ) ) )
564, 8, 12, 55syl3anc 1228 . . . . . 6  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  (
( x  i^i  y
)  e.  ( J qTop  ( F  |`  U. J
) )  <->  ( (
x  i^i  y )  C_ 
ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " (
x  i^i  y )
)  e.  J ) ) )
5756adantr 465 . . . . 5  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  (
( x  i^i  y
)  e.  ( J qTop  ( F  |`  U. J
) )  <->  ( (
x  i^i  y )  C_ 
ran  ( F  |`  U. J )  /\  ( `' ( F  |`  U. J ) " (
x  i^i  y )
)  e.  J ) ) )
5845, 54, 57mpbir2and 920 . . . 4  |-  ( ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  /\  (
x  e.  ( J qTop  ( F  |`  U. J
) )  /\  y  e.  ( J qTop  ( F  |`  U. J ) ) ) )  ->  (
x  i^i  y )  e.  ( J qTop  ( F  |`  U. J ) ) )
5958ralrimivva 2888 . . 3  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  A. x  e.  ( J qTop  ( F  |`  U. J ) ) A. y  e.  ( J qTop  ( F  |`  U. J ) ) ( x  i^i  y )  e.  ( J qTop  ( F  |`  U. J ) ) )
60 ovex 6320 . . . 4  |-  ( J qTop  ( F  |`  U. J
) )  e.  _V
61 istopg 19271 . . . 4  |-  ( ( J qTop  ( F  |`  U. J ) )  e. 
_V  ->  ( ( J qTop  ( F  |`  U. J
) )  e.  Top  <->  ( A. x ( x  C_  ( J qTop  ( F  |` 
U. J ) )  ->  U. x  e.  ( J qTop  ( F  |`  U. J ) ) )  /\  A. x  e.  ( J qTop  ( F  |`  U. J ) ) A. y  e.  ( J qTop  ( F  |`  U. J ) ) ( x  i^i  y )  e.  ( J qTop  ( F  |`  U. J ) ) ) ) )
6260, 61ax-mp 5 . . 3  |-  ( ( J qTop  ( F  |`  U. J ) )  e. 
Top 
<->  ( A. x ( x  C_  ( J qTop  ( F  |`  U. J
) )  ->  U. x  e.  ( J qTop  ( F  |`  U. J ) ) )  /\  A. x  e.  ( J qTop  ( F  |`  U. J ) ) A. y  e.  ( J qTop  ( F  |`  U. J ) ) ( x  i^i  y )  e.  ( J qTop  ( F  |`  U. J ) ) ) )
6338, 59, 62sylanbrc 664 . 2  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( J qTop  ( F  |`  U. J
) )  e.  Top )
643, 63eqeltrd 2555 1  |-  ( ( J  e.  Top  /\  F  e.  V  /\  Fun  F )  ->  ( J qTop  F )  e.  Top )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973   A.wal 1377    = wceq 1379    e. wcel 1767   A.wral 2817   _Vcvv 3118    i^i cin 3480    C_ wss 3481   ~Pcpw 4016   U.cuni 4251   U_ciun 4331   `'ccnv 5004   dom cdm 5005   ran crn 5006    |` cres 5007   "cima 5008   Fun wfun 5588   -onto->wfo 5592  (class class class)co 6295   qTop cqtop 14774   Topctop 19261
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-ral 2822  df-rex 2823  df-reu 2824  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-id 4801  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-qtop 14778  df-top 19266
This theorem is referenced by:  qtoptop  20067
  Copyright terms: Public domain W3C validator