MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopss Structured version   Unicode version

Theorem qtopss 19413
Description: A surjective continuous function from  J to  K induces a topology  J qTop  F on the base set of  K. This topology is in general finer than  K. Together with qtopid 19403, this implies that  J qTop  F is the finest topology making  F continuous, i.e. the final topology with respect to the family  { F }. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
qtopss  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )

Proof of Theorem qtopss
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 toponss 18659 . . . . 5  |-  ( ( K  e.  (TopOn `  Y )  /\  x  e.  K )  ->  x  C_  Y )
213ad2antl2 1151 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  x  C_  Y )
3 cnima 18994 . . . . 5  |-  ( ( F  e.  ( J  Cn  K )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
433ad2antl1 1150 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ( `' F "
x )  e.  J
)
5 simpl1 991 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F  e.  ( J  Cn  K ) )
6 cntop1 18969 . . . . . . 7  |-  ( F  e.  ( J  Cn  K )  ->  J  e.  Top )
75, 6syl 16 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  J  e.  Top )
8 eqid 2451 . . . . . . 7  |-  U. J  =  U. J
98toptopon 18663 . . . . . 6  |-  ( J  e.  Top  <->  J  e.  (TopOn `  U. J ) )
107, 9sylib 196 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  J  e.  (TopOn `  U. J ) )
11 simpl2 992 . . . . . . . 8  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  K  e.  (TopOn `  Y ) )
12 cnf2 18978 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  U. J )  /\  K  e.  (TopOn `  Y )  /\  F  e.  ( J  Cn  K ) )  ->  F : U. J
--> Y )
1310, 11, 5, 12syl3anc 1219 . . . . . . 7  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F : U. J --> Y )
14 ffn 5660 . . . . . . 7  |-  ( F : U. J --> Y  ->  F  Fn  U. J )
1513, 14syl 16 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F  Fn  U. J
)
16 simpl3 993 . . . . . 6  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ran  F  =  Y )
17 df-fo 5525 . . . . . 6  |-  ( F : U. J -onto-> Y  <->  ( F  Fn  U. J  /\  ran  F  =  Y ) )
1815, 16, 17sylanbrc 664 . . . . 5  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  F : U. J -onto-> Y )
19 elqtop3 19401 . . . . 5  |-  ( ( J  e.  (TopOn `  U. J )  /\  F : U. J -onto-> Y )  ->  ( x  e.  ( J qTop  F )  <-> 
( x  C_  Y  /\  ( `' F "
x )  e.  J
) ) )
2010, 18, 19syl2anc 661 . . . 4  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  ( x  e.  ( J qTop  F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
212, 4, 20mpbir2and 913 . . 3  |-  ( ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y )  /\  ran  F  =  Y )  /\  x  e.  K )  ->  x  e.  ( J qTop 
F ) )
2221ex 434 . 2  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  (
x  e.  K  ->  x  e.  ( J qTop  F ) ) )
2322ssrdv 3463 1  |-  ( ( F  e.  ( J  Cn  K )  /\  K  e.  (TopOn `  Y
)  /\  ran  F  =  Y )  ->  K  C_  ( J qTop  F ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1370    e. wcel 1758    C_ wss 3429   U.cuni 4192   `'ccnv 4940   ran crn 4942   "cima 4944    Fn wfn 5514   -->wf 5515   -onto->wfo 5517   ` cfv 5519  (class class class)co 6193   qTop cqtop 14552   Topctop 18623  TopOnctopon 18624    Cn ccn 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-id 4737  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-map 7319  df-qtop 14556  df-top 18628  df-topon 18631  df-cn 18956
This theorem is referenced by:  qtoprest  19415  qtopomap  19416  qtopcmap  19417
  Copyright terms: Public domain W3C validator