MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtoprest Structured version   Unicode version

Theorem qtoprest 19415
Description: If  A is a saturated open or closed set (where saturated means that  A  =  ( `' F " U ) for some  U), then the restriction of the quotient map  F to  A is a quotient map. (Contributed by Mario Carneiro, 24-Mar-2015.) (Revised by Mario Carneiro, 22-Aug-2015.)
Hypotheses
Ref Expression
qtoprest.2  |-  ( ph  ->  J  e.  (TopOn `  X ) )
qtoprest.3  |-  ( ph  ->  F : X -onto-> Y
)
qtoprest.4  |-  ( ph  ->  U  C_  Y )
qtoprest.5  |-  ( ph  ->  A  =  ( `' F " U ) )
qtoprest.6  |-  ( ph  ->  ( A  e.  J  \/  A  e.  ( Clsd `  J ) ) )
Assertion
Ref Expression
qtoprest  |-  ( ph  ->  ( ( J qTop  F
)t 
U )  =  ( ( Jt  A ) qTop  ( F  |`  A ) ) )

Proof of Theorem qtoprest
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 qtoprest.2 . . . . . 6  |-  ( ph  ->  J  e.  (TopOn `  X ) )
2 qtoprest.3 . . . . . . 7  |-  ( ph  ->  F : X -onto-> Y
)
3 fofn 5723 . . . . . . 7  |-  ( F : X -onto-> Y  ->  F  Fn  X )
42, 3syl 16 . . . . . 6  |-  ( ph  ->  F  Fn  X )
5 qtopid 19403 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
61, 4, 5syl2anc 661 . . . . 5  |-  ( ph  ->  F  e.  ( J  Cn  ( J qTop  F
) ) )
7 qtoprest.5 . . . . . . 7  |-  ( ph  ->  A  =  ( `' F " U ) )
8 cnvimass 5290 . . . . . . . 8  |-  ( `' F " U ) 
C_  dom  F
9 fndm 5611 . . . . . . . . 9  |-  ( F  Fn  X  ->  dom  F  =  X )
104, 9syl 16 . . . . . . . 8  |-  ( ph  ->  dom  F  =  X )
118, 10syl5sseq 3505 . . . . . . 7  |-  ( ph  ->  ( `' F " U )  C_  X
)
127, 11eqsstrd 3491 . . . . . 6  |-  ( ph  ->  A  C_  X )
13 toponuni 18657 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
141, 13syl 16 . . . . . 6  |-  ( ph  ->  X  =  U. J
)
1512, 14sseqtrd 3493 . . . . 5  |-  ( ph  ->  A  C_  U. J )
16 eqid 2451 . . . . . 6  |-  U. J  =  U. J
1716cnrest 19014 . . . . 5  |-  ( ( F  e.  ( J  Cn  ( J qTop  F
) )  /\  A  C_ 
U. J )  -> 
( F  |`  A )  e.  ( ( Jt  A )  Cn  ( J qTop 
F ) ) )
186, 15, 17syl2anc 661 . . . 4  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( J qTop 
F ) ) )
19 qtoptopon 19402 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
201, 2, 19syl2anc 661 . . . . 5  |-  ( ph  ->  ( J qTop  F )  e.  (TopOn `  Y
) )
21 df-ima 4954 . . . . . . 7  |-  ( F
" A )  =  ran  ( F  |`  A )
227imaeq2d 5270 . . . . . . . 8  |-  ( ph  ->  ( F " A
)  =  ( F
" ( `' F " U ) ) )
23 qtoprest.4 . . . . . . . . 9  |-  ( ph  ->  U  C_  Y )
24 foimacnv 5759 . . . . . . . . 9  |-  ( ( F : X -onto-> Y  /\  U  C_  Y )  ->  ( F "
( `' F " U ) )  =  U )
252, 23, 24syl2anc 661 . . . . . . . 8  |-  ( ph  ->  ( F " ( `' F " U ) )  =  U )
2622, 25eqtrd 2492 . . . . . . 7  |-  ( ph  ->  ( F " A
)  =  U )
2721, 26syl5eqr 2506 . . . . . 6  |-  ( ph  ->  ran  ( F  |`  A )  =  U )
28 eqimss 3509 . . . . . 6  |-  ( ran  ( F  |`  A )  =  U  ->  ran  ( F  |`  A ) 
C_  U )
2927, 28syl 16 . . . . 5  |-  ( ph  ->  ran  ( F  |`  A )  C_  U
)
30 cnrest2 19015 . . . . 5  |-  ( ( ( J qTop  F )  e.  (TopOn `  Y
)  /\  ran  ( F  |`  A )  C_  U  /\  U  C_  Y )  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( J qTop  F ) )  <->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  (
( J qTop  F )t  U
) ) ) )
3120, 29, 23, 30syl3anc 1219 . . . 4  |-  ( ph  ->  ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( J qTop  F ) )  <->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  (
( J qTop  F )t  U
) ) ) )
3218, 31mpbid 210 . . 3  |-  ( ph  ->  ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( ( J qTop  F )t  U ) ) )
33 resttopon 18890 . . . 4  |-  ( ( ( J qTop  F )  e.  (TopOn `  Y
)  /\  U  C_  Y
)  ->  ( ( J qTop  F )t  U )  e.  (TopOn `  U ) )
3420, 23, 33syl2anc 661 . . 3  |-  ( ph  ->  ( ( J qTop  F
)t 
U )  e.  (TopOn `  U ) )
35 qtopss 19413 . . 3  |-  ( ( ( F  |`  A )  e.  ( ( Jt  A )  Cn  ( ( J qTop  F )t  U ) )  /\  ( ( J qTop  F )t  U )  e.  (TopOn `  U
)  /\  ran  ( F  |`  A )  =  U )  ->  ( ( J qTop  F )t  U )  C_  (
( Jt  A ) qTop  ( F  |`  A ) ) )
3632, 34, 27, 35syl3anc 1219 . 2  |-  ( ph  ->  ( ( J qTop  F
)t 
U )  C_  (
( Jt  A ) qTop  ( F  |`  A ) ) )
37 resttopon 18890 . . . . . 6  |-  ( ( J  e.  (TopOn `  X )  /\  A  C_  X )  ->  ( Jt  A )  e.  (TopOn `  A ) )
381, 12, 37syl2anc 661 . . . . 5  |-  ( ph  ->  ( Jt  A )  e.  (TopOn `  A ) )
39 fnfun 5609 . . . . . . . 8  |-  ( F  Fn  X  ->  Fun  F )
404, 39syl 16 . . . . . . 7  |-  ( ph  ->  Fun  F )
4112, 10sseqtr4d 3494 . . . . . . 7  |-  ( ph  ->  A  C_  dom  F )
42 fores 5730 . . . . . . 7  |-  ( ( Fun  F  /\  A  C_ 
dom  F )  -> 
( F  |`  A ) : A -onto-> ( F
" A ) )
4340, 41, 42syl2anc 661 . . . . . 6  |-  ( ph  ->  ( F  |`  A ) : A -onto-> ( F
" A ) )
44 foeq3 5719 . . . . . . 7  |-  ( ( F " A )  =  U  ->  (
( F  |`  A ) : A -onto-> ( F
" A )  <->  ( F  |`  A ) : A -onto-> U ) )
4526, 44syl 16 . . . . . 6  |-  ( ph  ->  ( ( F  |`  A ) : A -onto->
( F " A
)  <->  ( F  |`  A ) : A -onto-> U ) )
4643, 45mpbid 210 . . . . 5  |-  ( ph  ->  ( F  |`  A ) : A -onto-> U )
47 elqtop3 19401 . . . . 5  |-  ( ( ( Jt  A )  e.  (TopOn `  A )  /\  ( F  |`  A ) : A -onto-> U )  ->  (
x  e.  ( ( Jt  A ) qTop  ( F  |`  A ) )  <->  ( x  C_  U  /\  ( `' ( F  |`  A )
" x )  e.  ( Jt  A ) ) ) )
4838, 46, 47syl2anc 661 . . . 4  |-  ( ph  ->  ( x  e.  ( ( Jt  A ) qTop  ( F  |`  A ) )  <->  ( x  C_  U  /\  ( `' ( F  |`  A )
" x )  e.  ( Jt  A ) ) ) )
49 cnvresima 5428 . . . . . . . 8  |-  ( `' ( F  |`  A )
" x )  =  ( ( `' F " x )  i^i  A
)
50 imass2 5305 . . . . . . . . . . 11  |-  ( x 
C_  U  ->  ( `' F " x ) 
C_  ( `' F " U ) )
5150adantl 466 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  U
)  ->  ( `' F " x )  C_  ( `' F " U ) )
527adantr 465 . . . . . . . . . 10  |-  ( (
ph  /\  x  C_  U
)  ->  A  =  ( `' F " U ) )
5351, 52sseqtr4d 3494 . . . . . . . . 9  |-  ( (
ph  /\  x  C_  U
)  ->  ( `' F " x )  C_  A )
54 df-ss 3443 . . . . . . . . 9  |-  ( ( `' F " x ) 
C_  A  <->  ( ( `' F " x )  i^i  A )  =  ( `' F "
x ) )
5553, 54sylib 196 . . . . . . . 8  |-  ( (
ph  /\  x  C_  U
)  ->  ( ( `' F " x )  i^i  A )  =  ( `' F "
x ) )
5649, 55syl5eq 2504 . . . . . . 7  |-  ( (
ph  /\  x  C_  U
)  ->  ( `' ( F  |`  A )
" x )  =  ( `' F "
x ) )
5756eleq1d 2520 . . . . . 6  |-  ( (
ph  /\  x  C_  U
)  ->  ( ( `' ( F  |`  A ) " x
)  e.  ( Jt  A )  <->  ( `' F " x )  e.  ( Jt  A ) ) )
58 simplrl 759 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  x  C_  U )
59 df-ss 3443 . . . . . . . . . 10  |-  ( x 
C_  U  <->  ( x  i^i  U )  =  x )
6058, 59sylib 196 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  (
x  i^i  U )  =  x )
61 topontop 18656 . . . . . . . . . . . 12  |-  ( ( J qTop  F )  e.  (TopOn `  Y )  ->  ( J qTop  F )  e.  Top )
6220, 61syl 16 . . . . . . . . . . 11  |-  ( ph  ->  ( J qTop  F )  e.  Top )
6362ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  ( J qTop  F )  e.  Top )
64 toponmax 18658 . . . . . . . . . . . . . 14  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
651, 64syl 16 . . . . . . . . . . . . 13  |-  ( ph  ->  X  e.  J )
66 fornex 6649 . . . . . . . . . . . . 13  |-  ( X  e.  J  ->  ( F : X -onto-> Y  ->  Y  e.  _V )
)
6765, 2, 66sylc 60 . . . . . . . . . . . 12  |-  ( ph  ->  Y  e.  _V )
6867, 23ssexd 4540 . . . . . . . . . . 11  |-  ( ph  ->  U  e.  _V )
6968ad2antrr 725 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  U  e.  _V )
7023ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  U  C_  Y )
7158, 70sstrd 3467 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  x  C_  Y )
72 topontop 18656 . . . . . . . . . . . . . . . 16  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
731, 72syl 16 . . . . . . . . . . . . . . 15  |-  ( ph  ->  J  e.  Top )
74 restopn2 18906 . . . . . . . . . . . . . . 15  |-  ( ( J  e.  Top  /\  A  e.  J )  ->  ( ( `' F " x )  e.  ( Jt  A )  <->  ( ( `' F " x )  e.  J  /\  ( `' F " x ) 
C_  A ) ) )
7573, 74sylan 471 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  A  e.  J )  ->  (
( `' F "
x )  e.  ( Jt  A )  <->  ( ( `' F " x )  e.  J  /\  ( `' F " x ) 
C_  A ) ) )
7675simprbda 623 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  A  e.  J )  /\  ( `' F " x )  e.  ( Jt  A ) )  ->  ( `' F " x )  e.  J )
7776adantrl 715 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  A  e.  J )  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  ->  ( `' F " x )  e.  J )
7877an32s 802 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  ( `' F " x )  e.  J )
79 elqtop3 19401 . . . . . . . . . . . . 13  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
801, 2, 79syl2anc 661 . . . . . . . . . . . 12  |-  ( ph  ->  ( x  e.  ( J qTop  F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
8180ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_  Y  /\  ( `' F " x )  e.  J ) ) )
8271, 78, 81mpbir2and 913 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  x  e.  ( J qTop  F ) )
83 elrestr 14478 . . . . . . . . . 10  |-  ( ( ( J qTop  F )  e.  Top  /\  U  e.  _V  /\  x  e.  ( J qTop  F ) )  ->  ( x  i^i  U )  e.  ( ( J qTop  F )t  U ) )
8463, 69, 82, 83syl3anc 1219 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  (
x  i^i  U )  e.  ( ( J qTop  F
)t 
U ) )
8560, 84eqeltrrd 2540 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  J )  ->  x  e.  ( ( J qTop  F
)t 
U ) )
8634ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  (
( J qTop  F )t  U
)  e.  (TopOn `  U ) )
87 toponuni 18657 . . . . . . . . . . . 12  |-  ( ( ( J qTop  F )t  U )  e.  (TopOn `  U )  ->  U  =  U. ( ( J qTop 
F )t  U ) )
8886, 87syl 16 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  U  =  U. ( ( J qTop 
F )t  U ) )
8988difeq1d 3574 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U  \  x )  =  ( U. ( ( J qTop  F )t  U ) 
\  x ) )
9023ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  U  C_  Y )
9120ad2antrr 725 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( J qTop  F )  e.  (TopOn `  Y ) )
92 toponuni 18657 . . . . . . . . . . . . 13  |-  ( ( J qTop  F )  e.  (TopOn `  Y )  ->  Y  =  U. ( J qTop  F ) )
9391, 92syl 16 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  Y  =  U. ( J qTop  F
) )
9490, 93sseqtrd 3493 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  U  C_ 
U. ( J qTop  F
) )
9590ssdifssd 3595 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U  \  x )  C_  Y )
9640ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  Fun  F )
97 funcnvcnv 5577 . . . . . . . . . . . . . . 15  |-  ( Fun 
F  ->  Fun  `' `' F )
98 imadif 5594 . . . . . . . . . . . . . . 15  |-  ( Fun  `' `' F  ->  ( `' F " ( U 
\  x ) )  =  ( ( `' F " U ) 
\  ( `' F " x ) ) )
9996, 97, 983syl 20 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( `' F " ( U 
\  x ) )  =  ( ( `' F " U ) 
\  ( `' F " x ) ) )
1007ad2antrr 725 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  A  =  ( `' F " U ) )
101100difeq1d 3574 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( A  \  ( `' F " x ) )  =  ( ( `' F " U )  \  ( `' F " x ) ) )
10299, 101eqtr4d 2495 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( `' F " ( U 
\  x ) )  =  ( A  \ 
( `' F "
x ) ) )
103 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  A  e.  ( Clsd `  J
) )
10438ad2antrr 725 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( Jt  A )  e.  (TopOn `  A ) )
105 toponuni 18657 . . . . . . . . . . . . . . . . 17  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  A  =  U. ( Jt  A ) )
106104, 105syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  A  =  U. ( Jt  A ) )
107106difeq1d 3574 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( A  \  ( `' F " x ) )  =  ( U. ( Jt  A )  \  ( `' F " x ) ) )
108 topontop 18656 . . . . . . . . . . . . . . . . 17  |-  ( ( Jt  A )  e.  (TopOn `  A )  ->  ( Jt  A )  e.  Top )
109104, 108syl 16 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( Jt  A )  e.  Top )
110 simplrr 760 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( `' F " x )  e.  ( Jt  A ) )
111 eqid 2451 . . . . . . . . . . . . . . . . 17  |-  U. ( Jt  A )  =  U. ( Jt  A )
112111opncld 18762 . . . . . . . . . . . . . . . 16  |-  ( ( ( Jt  A )  e.  Top  /\  ( `' F "
x )  e.  ( Jt  A ) )  -> 
( U. ( Jt  A )  \  ( `' F " x ) )  e.  ( Clsd `  ( Jt  A ) ) )
113109, 110, 112syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U. ( Jt  A )  \  ( `' F " x ) )  e.  ( Clsd `  ( Jt  A ) ) )
114107, 113eqeltrd 2539 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( A  \  ( `' F " x ) )  e.  ( Clsd `  ( Jt  A ) ) )
115 restcldr 18903 . . . . . . . . . . . . . 14  |-  ( ( A  e.  ( Clsd `  J )  /\  ( A  \  ( `' F " x ) )  e.  ( Clsd `  ( Jt  A ) ) )  ->  ( A  \ 
( `' F "
x ) )  e.  ( Clsd `  J
) )
116103, 114, 115syl2anc 661 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( A  \  ( `' F " x ) )  e.  ( Clsd `  J
) )
117102, 116eqeltrd 2539 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( `' F " ( U 
\  x ) )  e.  ( Clsd `  J
) )
118 qtopcld 19411 . . . . . . . . . . . . . 14  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> Y )  ->  (
( U  \  x
)  e.  ( Clsd `  ( J qTop  F ) )  <->  ( ( U 
\  x )  C_  Y  /\  ( `' F " ( U  \  x
) )  e.  (
Clsd `  J )
) ) )
1191, 2, 118syl2anc 661 . . . . . . . . . . . . 13  |-  ( ph  ->  ( ( U  \  x )  e.  (
Clsd `  ( J qTop  F ) )  <->  ( ( U  \  x )  C_  Y  /\  ( `' F " ( U  \  x
) )  e.  (
Clsd `  J )
) ) )
120119ad2antrr 725 . . . . . . . . . . . 12  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  (
( U  \  x
)  e.  ( Clsd `  ( J qTop  F ) )  <->  ( ( U 
\  x )  C_  Y  /\  ( `' F " ( U  \  x
) )  e.  (
Clsd `  J )
) ) )
12195, 117, 120mpbir2and 913 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U  \  x )  e.  ( Clsd `  ( J qTop  F ) ) )
122 difssd 3585 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U  \  x )  C_  U )
123 eqid 2451 . . . . . . . . . . . 12  |-  U. ( J qTop  F )  =  U. ( J qTop  F )
124123restcldi 18902 . . . . . . . . . . 11  |-  ( ( U  C_  U. ( J qTop  F )  /\  ( U  \  x )  e.  ( Clsd `  ( J qTop  F ) )  /\  ( U  \  x
)  C_  U )  ->  ( U  \  x
)  e.  ( Clsd `  ( ( J qTop  F
)t 
U ) ) )
12594, 121, 122, 124syl3anc 1219 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U  \  x )  e.  ( Clsd `  (
( J qTop  F )t  U
) ) )
12689, 125eqeltrrd 2540 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  ( U. ( ( J qTop  F
)t 
U )  \  x
)  e.  ( Clsd `  ( ( J qTop  F
)t 
U ) ) )
127 topontop 18656 . . . . . . . . . . 11  |-  ( ( ( J qTop  F )t  U )  e.  (TopOn `  U )  ->  (
( J qTop  F )t  U
)  e.  Top )
12886, 127syl 16 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  (
( J qTop  F )t  U
)  e.  Top )
129 simplrl 759 . . . . . . . . . . 11  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  x  C_  U )
130129, 88sseqtrd 3493 . . . . . . . . . 10  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  x  C_ 
U. ( ( J qTop 
F )t  U ) )
131 eqid 2451 . . . . . . . . . . 11  |-  U. (
( J qTop  F )t  U
)  =  U. (
( J qTop  F )t  U
)
132131isopn2 18761 . . . . . . . . . 10  |-  ( ( ( ( J qTop  F
)t 
U )  e.  Top  /\  x  C_  U. (
( J qTop  F )t  U
) )  ->  (
x  e.  ( ( J qTop  F )t  U )  <-> 
( U. ( ( J qTop  F )t  U ) 
\  x )  e.  ( Clsd `  (
( J qTop  F )t  U
) ) ) )
133128, 130, 132syl2anc 661 . . . . . . . . 9  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  (
x  e.  ( ( J qTop  F )t  U )  <-> 
( U. ( ( J qTop  F )t  U ) 
\  x )  e.  ( Clsd `  (
( J qTop  F )t  U
) ) ) )
134126, 133mpbird 232 . . . . . . . 8  |-  ( ( ( ph  /\  (
x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  /\  A  e.  ( Clsd `  J
) )  ->  x  e.  ( ( J qTop  F
)t 
U ) )
135 qtoprest.6 . . . . . . . . 9  |-  ( ph  ->  ( A  e.  J  \/  A  e.  ( Clsd `  J ) ) )
136135adantr 465 . . . . . . . 8  |-  ( (
ph  /\  ( x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  ->  ( A  e.  J  \/  A  e.  ( Clsd `  J ) ) )
13785, 134, 136mpjaodan 784 . . . . . . 7  |-  ( (
ph  /\  ( x  C_  U  /\  ( `' F " x )  e.  ( Jt  A ) ) )  ->  x  e.  ( ( J qTop  F
)t 
U ) )
138137expr 615 . . . . . 6  |-  ( (
ph  /\  x  C_  U
)  ->  ( ( `' F " x )  e.  ( Jt  A )  ->  x  e.  ( ( J qTop  F )t  U ) ) )
13957, 138sylbid 215 . . . . 5  |-  ( (
ph  /\  x  C_  U
)  ->  ( ( `' ( F  |`  A ) " x
)  e.  ( Jt  A )  ->  x  e.  ( ( J qTop  F
)t 
U ) ) )
140139expimpd 603 . . . 4  |-  ( ph  ->  ( ( x  C_  U  /\  ( `' ( F  |`  A ) " x )  e.  ( Jt  A ) )  ->  x  e.  ( ( J qTop  F )t  U ) ) )
14148, 140sylbid 215 . . 3  |-  ( ph  ->  ( x  e.  ( ( Jt  A ) qTop  ( F  |`  A ) )  ->  x  e.  ( ( J qTop  F )t  U ) ) )
142141ssrdv 3463 . 2  |-  ( ph  ->  ( ( Jt  A ) qTop  ( F  |`  A ) )  C_  ( ( J qTop  F )t  U ) )
14336, 142eqssd 3474 1  |-  ( ph  ->  ( ( J qTop  F
)t 
U )  =  ( ( Jt  A ) qTop  ( F  |`  A ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3071    \ cdif 3426    i^i cin 3428    C_ wss 3429   U.cuni 4192   `'ccnv 4940   dom cdm 4941   ran crn 4942    |` cres 4943   "cima 4944   Fun wfun 5513    Fn wfn 5514   -onto->wfo 5517   ` cfv 5519  (class class class)co 6193   ↾t crest 14470   qTop cqtop 14552   Topctop 18623  TopOnctopon 18624   Clsdccld 18745    Cn ccn 18953
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4504  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-int 4230  df-iun 4274  df-iin 4275  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-oadd 7027  df-er 7204  df-map 7319  df-en 7414  df-fin 7417  df-fi 7765  df-rest 14472  df-topgen 14493  df-qtop 14556  df-top 18628  df-bases 18630  df-topon 18631  df-cld 18748  df-cn 18956
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator