MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qtopid Structured version   Unicode version

Theorem qtopid 20372
Description: A quotient map is a continuous function into its quotient topology. (Contributed by Mario Carneiro, 23-Mar-2015.)
Assertion
Ref Expression
qtopid  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )

Proof of Theorem qtopid
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 simpr 459 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  Fn  X )
2 dffn4 5783 . . . 4  |-  ( F  Fn  X  <->  F : X -onto-> ran  F )
31, 2sylib 196 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F : X -onto-> ran  F )
4 fof 5777 . . 3  |-  ( F : X -onto-> ran  F  ->  F : X --> ran  F
)
53, 4syl 16 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F : X --> ran  F )
6 elqtop3 20370 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( x  e.  ( J qTop  F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
73, 6syldan 468 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  (
x  e.  ( J qTop 
F )  <->  ( x  C_ 
ran  F  /\  ( `' F " x )  e.  J ) ) )
87simplbda 622 . . 3  |-  ( ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  /\  x  e.  ( J qTop  F ) )  ->  ( `' F " x )  e.  J )
98ralrimiva 2868 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  A. x  e.  ( J qTop  F ) ( `' F "
x )  e.  J
)
10 qtoptopon 20371 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  F : X -onto-> ran  F )  -> 
( J qTop  F )  e.  (TopOn `  ran  F ) )
113, 10syldan 468 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  ( J qTop  F )  e.  (TopOn `  ran  F ) )
12 iscn 19903 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( J qTop  F )  e.  (TopOn `  ran  F ) )  ->  ( F  e.  ( J  Cn  ( J qTop  F ) )  <->  ( F : X --> ran  F  /\  A. x  e.  ( J qTop 
F ) ( `' F " x )  e.  J ) ) )
1311, 12syldan 468 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  ( F  e.  ( J  Cn  ( J qTop  F ) )  <->  ( F : X
--> ran  F  /\  A. x  e.  ( J qTop  F ) ( `' F " x )  e.  J
) ) )
145, 9, 13mpbir2and 920 1  |-  ( ( J  e.  (TopOn `  X )  /\  F  Fn  X )  ->  F  e.  ( J  Cn  ( J qTop  F ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 367    e. wcel 1823   A.wral 2804    C_ wss 3461   `'ccnv 4987   ran crn 4989   "cima 4991    Fn wfn 5565   -->wf 5566   -onto->wfo 5568   ` cfv 5570  (class class class)co 6270   qTop cqtop 14992  TopOnctopon 19562    Cn ccn 19892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-ral 2809  df-rex 2810  df-reu 2811  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-op 4023  df-uni 4236  df-iun 4317  df-br 4440  df-opab 4498  df-mpt 4499  df-id 4784  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-map 7414  df-qtop 14996  df-top 19566  df-topon 19569  df-cn 19895
This theorem is referenced by:  qtopcmplem  20374  qtopkgen  20377  qtoprest  20384  kqid  20395  qtopf1  20483  qtophmeo  20484  qustgplem  20785  circcn  28076
  Copyright terms: Public domain W3C validator