MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Structured version   Unicode version

Theorem qredeu 13805
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qredeu
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 10680 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  ZZ )
2 gcddvds 13711 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z  /\  ( z  gcd  n
)  ||  n )
)
32simpld 459 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  z )
41, 3sylan2 474 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  z )
5 gcdcl 13713 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  e.  NN0 )
61, 5sylan2 474 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN0 )
76nn0zd 10757 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  ZZ )
8 simpl 457 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  ZZ )
91adantl 466 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  ZZ )
10 nnne0 10366 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
1110neneqd 2636 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  -.  n  =  0 )
1211intnand 907 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -.  ( z  =  0  /\  n  =  0 ) )
1312adantl 466 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  -.  ( z  =  0  /\  n  =  0 ) )
14 gcdn0cl 13710 . . . . . . . . . . . 12  |-  ( ( ( z  e.  ZZ  /\  n  e.  ZZ )  /\  -.  ( z  =  0  /\  n  =  0 ) )  ->  ( z  gcd  n )  e.  NN )
158, 9, 13, 14syl21anc 1217 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN )
16 nnne0 10366 . . . . . . . . . . 11  |-  ( ( z  gcd  n )  e.  NN  ->  (
z  gcd  n )  =/=  0 )
1715, 16syl 16 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  =/=  0 )
18 dvdsval2 13550 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  z  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z 
<->  ( z  /  (
z  gcd  n )
)  e.  ZZ ) )
197, 17, 8, 18syl3anc 1218 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  z  <->  ( z  /  ( z  gcd  n ) )  e.  ZZ ) )
204, 19mpbid 210 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  /  (
z  gcd  n )
)  e.  ZZ )
21203adant3 1008 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( z  /  (
z  gcd  n )
)  e.  ZZ )
222simprd 463 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  n )
231, 22sylan2 474 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  n )
24 dvdsval2 13550 . . . . . . . . . . . 12  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  n 
<->  ( n  /  (
z  gcd  n )
)  e.  ZZ ) )
257, 17, 9, 24syl3anc 1218 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  n  <->  ( n  /  ( z  gcd  n ) )  e.  ZZ ) )
2623, 25mpbid 210 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( n  /  (
z  gcd  n )
)  e.  ZZ )
27 nnre 10341 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  RR )
2827adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  RR )
296nn0red 10649 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  RR )
30 nngt0 10363 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  n )
32 nngt0 10363 . . . . . . . . . . . 12  |-  ( ( z  gcd  n )  e.  NN  ->  0  <  ( z  gcd  n
) )
3315, 32syl 16 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( z  gcd  n ) )
3428, 29, 31, 33divgt0d 10280 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( n  /  ( z  gcd  n ) ) )
3526, 34jca 532 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
36353adant3 1008 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
37 elnnz 10668 . . . . . . . 8  |-  ( ( n  /  ( z  gcd  n ) )  e.  NN  <->  ( (
n  /  ( z  gcd  n ) )  e.  ZZ  /\  0  <  ( n  /  (
z  gcd  n )
) ) )
3836, 37sylibr 212 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( n  /  (
z  gcd  n )
)  e.  NN )
39 opelxpi 4883 . . . . . . 7  |-  ( ( ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  NN )  ->  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  e.  ( ZZ  X.  NN ) )
4021, 38, 39syl2anc 661 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  <. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN ) )
4120, 26gcdcld 13714 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  NN0 )
4241nn0cnd 10650 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  CC )
43 ax-1cn 9352 . . . . . . . . 9  |-  1  e.  CC
4443a1i 11 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  1  e.  CC )
456nn0cnd 10650 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  CC )
4645mulid1d 9415 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  1 )  =  ( z  gcd  n ) )
47 zcn 10663 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
4847adantr 465 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  CC )
4948, 45, 17divcan2d 10121 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
z  /  ( z  gcd  n ) ) )  =  z )
50 nncn 10342 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
5150adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  CC )
5251, 45, 17divcan2d 10121 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) )  =  n )
5349, 52oveq12d 6121 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( z  gcd  n ) )
54 mulgcd 13742 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  NN0  /\  ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  ZZ )  ->  ( ( ( z  gcd  n )  x.  ( z  / 
( z  gcd  n
) ) )  gcd  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) ) ) )
556, 20, 26, 54syl3anc 1218 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) ) )
5646, 53, 553eqtr2rd 2482 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
( z  /  (
z  gcd  n )
)  gcd  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  1 ) )
5742, 44, 45, 17, 56mulcanad 9983 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
58573adant3 1008 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
5910adantl 466 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  =/=  0 )
6048, 51, 45, 59, 17divcan7d 10147 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) )  =  ( z  /  n ) )
6160eqeq2d 2454 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) )  <-> 
A  =  ( z  /  n ) ) )
6261biimp3ar 1319 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  A  =  ( (
z  /  ( z  gcd  n ) )  /  ( n  / 
( z  gcd  n
) ) ) )
63 ovex 6128 . . . . . . . . . . 11  |-  ( z  /  ( z  gcd  n ) )  e. 
_V
64 ovex 6128 . . . . . . . . . . 11  |-  ( n  /  ( z  gcd  n ) )  e. 
_V
6563, 64op1std 6599 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 1st `  x
)  =  ( z  /  ( z  gcd  n ) ) )
6663, 64op2ndd 6600 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 2nd `  x
)  =  ( n  /  ( z  gcd  n ) ) )
6765, 66oveq12d 6121 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) )
6867eqeq1d 2451 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
6965, 66oveq12d 6121 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  /  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  / 
( n  /  (
z  gcd  n )
) ) )
7069eqeq2d 2454 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) )  <->  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )
7168, 70anbi12d 710 . . . . . . 7  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) )  =  1  /\  A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) ) ) ) )
7271rspcev 3085 . . . . . 6  |-  ( (
<. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN )  /\  ( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) )  =  1  /\  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
7340, 58, 62, 72syl12anc 1216 . . . . 5  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
74 elxp6 6620 . . . . . . 7  |-  ( x  e.  ( ZZ  X.  NN )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) ) )
75 elxp6 6620 . . . . . . 7  |-  ( y  e.  ( ZZ  X.  NN )  <->  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )
76 simprl 755 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x )  e.  ZZ )
7776ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  x )  e.  ZZ )
78 simprr 756 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x )  e.  NN )
7978ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  x )  e.  NN )
80 simprll 761 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )
81 simprl 755 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 1st `  y )  e.  ZZ )
8281ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  y )  e.  ZZ )
83 simprr 756 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 2nd `  y )  e.  NN )
8483ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  y )  e.  NN )
85 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )
86 simprlr 762 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )
87 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  y )  /  ( 2nd `  y ) ) )
8886, 87eqtr3d 2477 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
89 qredeq 13804 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN  /\  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN  /\  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )  /\  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
9077, 79, 80, 82, 84, 85, 88, 89syl331anc 1243 . . . . . . . . . 10  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
91 fvex 5713 . . . . . . . . . . 11  |-  ( 1st `  x )  e.  _V
92 fvex 5713 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
9391, 92opth 4578 . . . . . . . . . 10  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. 
<->  ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
9490, 93sylibr 212 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
95 simplll 757 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
96 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
9794, 95, 963eqtr4d 2485 . . . . . . . 8  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  y )
9897ex 434 . . . . . . 7  |-  ( ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  (
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
9974, 75, 98syl2anb 479 . . . . . 6  |-  ( ( x  e.  ( ZZ 
X.  NN )  /\  y  e.  ( ZZ  X.  NN ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
10099rgen2a 2794 . . . . 5  |-  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y )
10173, 100jctir 538 . . . 4  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
1021013expia 1189 . . 3  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) ) )
103102rexlimivv 2858 . 2  |-  ( E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
104 elq 10967 . 2  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n ) )
105 fveq2 5703 . . . . . 6  |-  ( x  =  y  ->  ( 1st `  x )  =  ( 1st `  y
) )
106 fveq2 5703 . . . . . 6  |-  ( x  =  y  ->  ( 2nd `  x )  =  ( 2nd `  y
) )
107105, 106oveq12d 6121 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  ( ( 1st `  y
)  gcd  ( 2nd `  y ) ) )
108107eqeq1d 2451 . . . 4  |-  ( x  =  y  ->  (
( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  <->  ( ( 1st `  y )  gcd  ( 2nd `  y ) )  =  1 ) )
109105, 106oveq12d 6121 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
110109eqeq2d 2454 . . . 4  |-  ( x  =  y  ->  ( A  =  ( ( 1st `  x )  / 
( 2nd `  x
) )  <->  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )
111108, 110anbi12d 710 . . 3  |-  ( x  =  y  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )
112111reu4 3165 . 2  |-  ( E! x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
113103, 104, 1123imtr4i 266 1  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 965    = wceq 1369    e. wcel 1756    =/= wne 2618   A.wral 2727   E.wrex 2728   E!wreu 2729   <.cop 3895   class class class wbr 4304    X. cxp 4850   ` cfv 5430  (class class class)co 6103   1stc1st 6587   2ndc2nd 6588   CCcc 9292   RRcr 9293   0cc0 9294   1c1 9295    x. cmul 9299    < clt 9430    / cdiv 10005   NNcn 10334   NN0cn0 10591   ZZcz 10658   QQcq 10965    || cdivides 13547    gcd cgcd 13702
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-cnex 9350  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371  ax-pre-sup 9372
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-sup 7703  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-2 10392  df-3 10393  df-n0 10592  df-z 10659  df-uz 10874  df-q 10966  df-rp 11004  df-fl 11654  df-mod 11721  df-seq 11819  df-exp 11878  df-cj 12600  df-re 12601  df-im 12602  df-sqr 12736  df-abs 12737  df-dvds 13548  df-gcd 13703
This theorem is referenced by:  qnumdencl  13829  qnumdenbi  13834
  Copyright terms: Public domain W3C validator