MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qredeu Structured version   Unicode version

Theorem qredeu 14123
Description: Every rational number has a unique reduced form. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
qredeu  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Distinct variable group:    x, A

Proof of Theorem qredeu
Dummy variables  n  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 10898 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  ZZ )
2 gcddvds 14028 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z  /\  ( z  gcd  n
)  ||  n )
)
32simpld 459 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  z )
41, 3sylan2 474 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  z )
5 gcdcl 14030 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  e.  NN0 )
61, 5sylan2 474 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN0 )
76nn0zd 10976 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  ZZ )
8 simpl 457 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  ZZ )
91adantl 466 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  ZZ )
10 nnne0 10580 . . . . . . . . . . . . . . 15  |-  ( n  e.  NN  ->  n  =/=  0 )
1110neneqd 2669 . . . . . . . . . . . . . 14  |-  ( n  e.  NN  ->  -.  n  =  0 )
1211intnand 914 . . . . . . . . . . . . 13  |-  ( n  e.  NN  ->  -.  ( z  =  0  /\  n  =  0 ) )
1312adantl 466 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  -.  ( z  =  0  /\  n  =  0 ) )
14 gcdn0cl 14027 . . . . . . . . . . . 12  |-  ( ( ( z  e.  ZZ  /\  n  e.  ZZ )  /\  -.  ( z  =  0  /\  n  =  0 ) )  ->  ( z  gcd  n )  e.  NN )
158, 9, 13, 14syl21anc 1227 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  NN )
16 nnne0 10580 . . . . . . . . . . 11  |-  ( ( z  gcd  n )  e.  NN  ->  (
z  gcd  n )  =/=  0 )
1715, 16syl 16 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  =/=  0 )
18 dvdsval2 13866 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  z  e.  ZZ )  ->  ( ( z  gcd  n )  ||  z 
<->  ( z  /  (
z  gcd  n )
)  e.  ZZ ) )
197, 17, 8, 18syl3anc 1228 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  z  <->  ( z  /  ( z  gcd  n ) )  e.  ZZ ) )
204, 19mpbid 210 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  /  (
z  gcd  n )
)  e.  ZZ )
21203adant3 1016 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( z  /  (
z  gcd  n )
)  e.  ZZ )
222simprd 463 . . . . . . . . . . . 12  |-  ( ( z  e.  ZZ  /\  n  e.  ZZ )  ->  ( z  gcd  n
)  ||  n )
231, 22sylan2 474 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  ||  n )
24 dvdsval2 13866 . . . . . . . . . . . 12  |-  ( ( ( z  gcd  n
)  e.  ZZ  /\  ( z  gcd  n
)  =/=  0  /\  n  e.  ZZ )  ->  ( ( z  gcd  n )  ||  n 
<->  ( n  /  (
z  gcd  n )
)  e.  ZZ ) )
257, 17, 9, 24syl3anc 1228 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  ||  n  <->  ( n  /  ( z  gcd  n ) )  e.  ZZ ) )
2623, 25mpbid 210 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( n  /  (
z  gcd  n )
)  e.  ZZ )
27 nnre 10555 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  RR )
2827adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  RR )
296nn0red 10865 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  RR )
30 nngt0 10577 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  0  <  n )
3130adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  n )
32 nngt0 10577 . . . . . . . . . . . 12  |-  ( ( z  gcd  n )  e.  NN  ->  0  <  ( z  gcd  n
) )
3315, 32syl 16 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( z  gcd  n ) )
3428, 29, 31, 33divgt0d 10493 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  0  <  ( n  /  ( z  gcd  n ) ) )
3526, 34jca 532 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
36353adant3 1016 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( n  / 
( z  gcd  n
) )  e.  ZZ  /\  0  <  ( n  /  ( z  gcd  n ) ) ) )
37 elnnz 10886 . . . . . . . 8  |-  ( ( n  /  ( z  gcd  n ) )  e.  NN  <->  ( (
n  /  ( z  gcd  n ) )  e.  ZZ  /\  0  <  ( n  /  (
z  gcd  n )
) ) )
3836, 37sylibr 212 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( n  /  (
z  gcd  n )
)  e.  NN )
39 opelxpi 5037 . . . . . . 7  |-  ( ( ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  NN )  ->  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  e.  ( ZZ  X.  NN ) )
4021, 38, 39syl2anc 661 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  <. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN ) )
4120, 26gcdcld 14031 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  NN0 )
4241nn0cnd 10866 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  e.  CC )
43 1cnd 9624 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  1  e.  CC )
446nn0cnd 10866 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( z  gcd  n
)  e.  CC )
4544mulid1d 9625 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  1 )  =  ( z  gcd  n ) )
46 zcn 10881 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
4746adantr 465 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  z  e.  CC )
4847, 44, 17divcan2d 10334 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
z  /  ( z  gcd  n ) ) )  =  z )
49 nncn 10556 . . . . . . . . . . . 12  |-  ( n  e.  NN  ->  n  e.  CC )
5049adantl 466 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  e.  CC )
5150, 44, 17divcan2d 10334 . . . . . . . . . 10  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) )  =  n )
5248, 51oveq12d 6313 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( z  gcd  n ) )
53 mulgcd 14059 . . . . . . . . . 10  |-  ( ( ( z  gcd  n
)  e.  NN0  /\  ( z  /  (
z  gcd  n )
)  e.  ZZ  /\  ( n  /  (
z  gcd  n )
)  e.  ZZ )  ->  ( ( ( z  gcd  n )  x.  ( z  / 
( z  gcd  n
) ) )  gcd  ( ( z  gcd  n )  x.  (
n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n
)  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) ) ) )
546, 20, 26, 53syl3anc 1228 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( ( z  gcd  n )  x.  ( z  /  (
z  gcd  n )
) )  gcd  (
( z  gcd  n
)  x.  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) ) )
5545, 52, 543eqtr2rd 2515 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  gcd  n )  x.  (
( z  /  (
z  gcd  n )
)  gcd  ( n  /  ( z  gcd  n ) ) ) )  =  ( ( z  gcd  n )  x.  1 ) )
5642, 43, 44, 17, 55mulcanad 10196 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
57563adant3 1016 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 )
5810adantl 466 . . . . . . . . 9  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  n  =/=  0 )
5947, 50, 44, 58, 17divcan7d 10360 . . . . . . . 8  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) )  =  ( z  /  n ) )
6059eqeq2d 2481 . . . . . . 7  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) )  <-> 
A  =  ( z  /  n ) ) )
6160biimp3ar 1329 . . . . . 6  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  A  =  ( (
z  /  ( z  gcd  n ) )  /  ( n  / 
( z  gcd  n
) ) ) )
62 ovex 6320 . . . . . . . . . . 11  |-  ( z  /  ( z  gcd  n ) )  e. 
_V
63 ovex 6320 . . . . . . . . . . 11  |-  ( n  /  ( z  gcd  n ) )  e. 
_V
6462, 63op1std 6805 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 1st `  x
)  =  ( z  /  ( z  gcd  n ) ) )
6562, 63op2ndd 6806 . . . . . . . . . 10  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( 2nd `  x
)  =  ( n  /  ( z  gcd  n ) ) )
6664, 65oveq12d 6313 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) ) )
6766eqeq1d 2469 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  <-> 
( ( z  / 
( z  gcd  n
) )  gcd  (
n  /  ( z  gcd  n ) ) )  =  1 ) )
6864, 65oveq12d 6313 . . . . . . . . 9  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( 1st `  x )  /  ( 2nd `  x ) )  =  ( ( z  /  ( z  gcd  n ) )  / 
( n  /  (
z  gcd  n )
) ) )
6968eqeq2d 2481 . . . . . . . 8  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) )  <->  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )
7067, 69anbi12d 710 . . . . . . 7  |-  ( x  =  <. ( z  / 
( z  gcd  n
) ) ,  ( n  /  ( z  gcd  n ) )
>.  ->  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  /  (
z  gcd  n )
) )  =  1  /\  A  =  ( ( z  /  (
z  gcd  n )
)  /  ( n  /  ( z  gcd  n ) ) ) ) ) )
7170rspcev 3219 . . . . . 6  |-  ( (
<. ( z  /  (
z  gcd  n )
) ,  ( n  /  ( z  gcd  n ) ) >.  e.  ( ZZ  X.  NN )  /\  ( ( ( z  /  ( z  gcd  n ) )  gcd  ( n  / 
( z  gcd  n
) ) )  =  1  /\  A  =  ( ( z  / 
( z  gcd  n
) )  /  (
n  /  ( z  gcd  n ) ) ) ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
7240, 57, 61, 71syl12anc 1226 . . . . 5  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  ->  E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
73 elxp6 6827 . . . . . . 7  |-  ( x  e.  ( ZZ  X.  NN )  <->  ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) ) )
74 elxp6 6827 . . . . . . 7  |-  ( y  e.  ( ZZ  X.  NN )  <->  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )
75 simprl 755 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 1st `  x )  e.  ZZ )
7675ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  x )  e.  ZZ )
77 simprr 756 . . . . . . . . . . . 12  |-  ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  ->  ( 2nd `  x )  e.  NN )
7877ad2antrr 725 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  x )  e.  NN )
79 simprll 761 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )
80 simprl 755 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 1st `  y )  e.  ZZ )
8180ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 1st `  y )  e.  ZZ )
82 simprr 756 . . . . . . . . . . . 12  |-  ( ( y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) )  ->  ( 2nd `  y )  e.  NN )
8382ad2antlr 726 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  ( 2nd `  y )  e.  NN )
84 simprrl 763 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )
85 simprlr 762 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )
86 simprrr 764 . . . . . . . . . . . 12  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  A  =  ( ( 1st `  y )  /  ( 2nd `  y ) ) )
8785, 86eqtr3d 2510 . . . . . . . . . . 11  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
88 qredeq 14122 . . . . . . . . . . 11  |-  ( ( ( ( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN  /\  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1 )  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN  /\  (
( 1st `  y
)  gcd  ( 2nd `  y ) )  =  1 )  /\  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )  ->  ( ( 1st `  x )  =  ( 1st `  y )  /\  ( 2nd `  x
)  =  ( 2nd `  y ) ) )
8976, 78, 79, 81, 83, 84, 87, 88syl331anc 1253 . . . . . . . . . 10  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  (
( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
90 fvex 5882 . . . . . . . . . . 11  |-  ( 1st `  x )  e.  _V
91 fvex 5882 . . . . . . . . . . 11  |-  ( 2nd `  x )  e.  _V
9290, 91opth 4727 . . . . . . . . . 10  |-  ( <.
( 1st `  x
) ,  ( 2nd `  x ) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. 
<->  ( ( 1st `  x
)  =  ( 1st `  y )  /\  ( 2nd `  x )  =  ( 2nd `  y
) ) )
9389, 92sylibr 212 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >. )
94 simplll 757 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  <. ( 1st `  x
) ,  ( 2nd `  x ) >. )
95 simplrl 759 . . . . . . . . 9  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  y  =  <. ( 1st `  y
) ,  ( 2nd `  y ) >. )
9693, 94, 953eqtr4d 2518 . . . . . . . 8  |-  ( ( ( ( x  = 
<. ( 1st `  x
) ,  ( 2nd `  x ) >.  /\  (
( 1st `  x
)  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  ( y  = 
<. ( 1st `  y
) ,  ( 2nd `  y ) >.  /\  (
( 1st `  y
)  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  /\  ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )  ->  x  =  y )
9796ex 434 . . . . . . 7  |-  ( ( ( x  =  <. ( 1st `  x ) ,  ( 2nd `  x
) >.  /\  ( ( 1st `  x )  e.  ZZ  /\  ( 2nd `  x )  e.  NN ) )  /\  (
y  =  <. ( 1st `  y ) ,  ( 2nd `  y
) >.  /\  ( ( 1st `  y )  e.  ZZ  /\  ( 2nd `  y )  e.  NN ) ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
9873, 74, 97syl2anb 479 . . . . . 6  |-  ( ( x  e.  ( ZZ 
X.  NN )  /\  y  e.  ( ZZ  X.  NN ) )  -> 
( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) )
9998rgen2a 2894 . . . . 5  |-  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y )
10072, 99jctir 538 . . . 4  |-  ( ( z  e.  ZZ  /\  n  e.  NN  /\  A  =  ( z  /  n ) )  -> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
1011003expia 1198 . . 3  |-  ( ( z  e.  ZZ  /\  n  e.  NN )  ->  ( A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) ) )
102101rexlimivv 2964 . 2  |-  ( E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n )  ->  ( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
103 elq 11196 . 2  |-  ( A  e.  QQ  <->  E. z  e.  ZZ  E. n  e.  NN  A  =  ( z  /  n ) )
104 fveq2 5872 . . . . . 6  |-  ( x  =  y  ->  ( 1st `  x )  =  ( 1st `  y
) )
105 fveq2 5872 . . . . . 6  |-  ( x  =  y  ->  ( 2nd `  x )  =  ( 2nd `  y
) )
106104, 105oveq12d 6313 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  gcd  ( 2nd `  x ) )  =  ( ( 1st `  y
)  gcd  ( 2nd `  y ) ) )
107106eqeq1d 2469 . . . 4  |-  ( x  =  y  ->  (
( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  <->  ( ( 1st `  y )  gcd  ( 2nd `  y ) )  =  1 ) )
108104, 105oveq12d 6313 . . . . 5  |-  ( x  =  y  ->  (
( 1st `  x
)  /  ( 2nd `  x ) )  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) )
109108eqeq2d 2481 . . . 4  |-  ( x  =  y  ->  ( A  =  ( ( 1st `  x )  / 
( 2nd `  x
) )  <->  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )
110107, 109anbi12d 710 . . 3  |-  ( x  =  y  ->  (
( ( ( 1st `  x )  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x )  /  ( 2nd `  x ) ) )  <->  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) ) )
111110reu4 3302 . 2  |-  ( E! x  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  <-> 
( E. x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x )  gcd  ( 2nd `  x
) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  A. x  e.  ( ZZ  X.  NN ) A. y  e.  ( ZZ  X.  NN ) ( ( ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) )  /\  ( ( ( 1st `  y )  gcd  ( 2nd `  y
) )  =  1  /\  A  =  ( ( 1st `  y
)  /  ( 2nd `  y ) ) ) )  ->  x  =  y ) ) )
112102, 103, 1113imtr4i 266 1  |-  ( A  e.  QQ  ->  E! x  e.  ( ZZ  X.  NN ) ( ( ( 1st `  x
)  gcd  ( 2nd `  x ) )  =  1  /\  A  =  ( ( 1st `  x
)  /  ( 2nd `  x ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   A.wral 2817   E.wrex 2818   E!wreu 2819   <.cop 4039   class class class wbr 4453    X. cxp 5003   ` cfv 5594  (class class class)co 6295   1stc1st 6793   2ndc2nd 6794   CCcc 9502   RRcr 9503   0cc0 9504   1c1 9505    x. cmul 9509    < clt 9640    / cdiv 10218   NNcn 10548   NN0cn0 10807   ZZcz 10876   QQcq 11194    || cdivides 13863    gcd cgcd 14019
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-recs 7054  df-rdg 7088  df-er 7323  df-en 7529  df-dom 7530  df-sdom 7531  df-sup 7913  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-n0 10808  df-z 10877  df-uz 11095  df-q 11195  df-rp 11233  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-dvds 13864  df-gcd 14020
This theorem is referenced by:  qnumdencl  14147  qnumdenbi  14152
  Copyright terms: Public domain W3C validator