Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhvq Structured version   Unicode version

Theorem qqhvq 27601
Description: The image of a quotient by the QQHom homomorphism. (Contributed by Thierry Arnoux, 28-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0  |-  B  =  ( Base `  R
)
qqhval2.1  |-  ./  =  (/r
`  R )
qqhval2.2  |-  L  =  ( ZRHom `  R
)
Assertion
Ref Expression
qqhvq  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( (QQHom `  R
) `  ( X  /  Y ) )  =  ( ( L `  X )  ./  ( L `  Y )
) )

Proof of Theorem qqhvq
StepHypRef Expression
1 zssq 11185 . . . . 5  |-  ZZ  C_  QQ
2 simpr1 1002 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  ZZ )
31, 2sseldi 3502 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  QQ )
4 simpr2 1003 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  ZZ )
51, 4sseldi 3502 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  QQ )
6 simpr3 1004 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  =/=  0 )
7 qdivcl 11199 . . . 4  |-  ( ( X  e.  QQ  /\  Y  e.  QQ  /\  Y  =/=  0 )  ->  ( X  /  Y )  e.  QQ )
83, 5, 6, 7syl3anc 1228 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  /  Y
)  e.  QQ )
9 qqhval2.0 . . . 4  |-  B  =  ( Base `  R
)
10 qqhval2.1 . . . 4  |-  ./  =  (/r
`  R )
11 qqhval2.2 . . . 4  |-  L  =  ( ZRHom `  R
)
129, 10, 11qqhvval 27597 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  /  Y )  e.  QQ )  ->  (
(QQHom `  R ) `  ( X  /  Y
) )  =  ( ( L `  (numer `  ( X  /  Y
) ) )  ./  ( L `  (denom `  ( X  /  Y
) ) ) ) )
138, 12syldan 470 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( (QQHom `  R
) `  ( X  /  Y ) )  =  ( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) ) )
149, 10, 11qqhval2lem 27595 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  X ) 
./  ( L `  Y ) ) )
1513, 14eqtrd 2508 1  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( (QQHom `  R
) `  ( X  /  Y ) )  =  ( ( L `  X )  ./  ( L `  Y )
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   ` cfv 5586  (class class class)co 6282   0cc0 9488    / cdiv 10202   ZZcz 10860   QQcq 11178  numercnumer 14118  denomcdenom 14119   Basecbs 14483  /rcdvr 17112   DivRingcdr 17176   ZRHomczrh 18301  chrcchr 18303  QQHomcqqh 27586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-inf2 8054  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-pre-sup 9566  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-sup 7897  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-rp 11217  df-fz 11669  df-fl 11893  df-mod 11960  df-seq 12071  df-exp 12130  df-cj 12889  df-re 12890  df-im 12891  df-sqrt 13025  df-abs 13026  df-dvds 13841  df-gcd 13997  df-numer 14120  df-denom 14121  df-gz 14300  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-0g 14690  df-mnd 15725  df-mhm 15774  df-grp 15855  df-minusg 15856  df-sbg 15857  df-mulg 15858  df-subg 15990  df-ghm 16057  df-od 16346  df-cmn 16593  df-mgp 16929  df-ur 16941  df-rng 16985  df-cring 16986  df-oppr 17053  df-dvdsr 17071  df-unit 17072  df-invr 17102  df-dvr 17113  df-rnghom 17145  df-drng 17178  df-subrg 17207  df-cnfld 18189  df-zring 18254  df-zrh 18305  df-chr 18307  df-qqh 27587
This theorem is referenced by:  qqhghm  27602  qqhrhm  27603
  Copyright terms: Public domain W3C validator