Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Structured version   Unicode version

Theorem qqhval2lem 28123
Description: Lemma for qqhval2 28124 (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0  |-  B  =  ( Base `  R
)
qqhval2.1  |-  ./  =  (/r
`  R )
qqhval2.2  |-  L  =  ( ZRHom `  R
)
Assertion
Ref Expression
qqhval2lem  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  X ) 
./  ( L `  Y ) ) )

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngring 17530 . . . . 5  |-  ( R  e.  DivRing  ->  R  e.  Ring )
2 qqhval2.2 . . . . . 6  |-  L  =  ( ZRHom `  R
)
32zrhrhm 18676 . . . . 5  |-  ( R  e.  Ring  ->  L  e.  (ring RingHom  R ) )
41, 3syl 16 . . . 4  |-  ( R  e.  DivRing  ->  L  e.  (ring RingHom  R
) )
54ad2antrr 725 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L  e.  (ring RingHom  R ) )
6 simpr1 1002 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  ZZ )
7 simpr2 1003 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  ZZ )
86, 7gcdcld 14168 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  NN0 )
98nn0zd 10988 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  ZZ )
10 simpr3 1004 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  =/=  0 )
11 gcdeq0 14171 . . . . . . . . 9  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  =  0  <->  ( X  =  0  /\  Y  =  0 ) ) )
1211simplbda 624 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( X  gcd  Y )  =  0 )  ->  Y  =  0 )
1312ex 434 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  =  0  ->  Y  =  0 ) )
1413necon3d 2681 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( Y  =/=  0  ->  ( X  gcd  Y
)  =/=  0 ) )
1514imp 429 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  Y  =/=  0
)  ->  ( X  gcd  Y )  =/=  0
)
166, 7, 10, 15syl21anc 1227 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  =/=  0 )
17 gcddvds 14165 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  ||  X  /\  ( X  gcd  Y ) 
||  Y ) )
186, 7, 17syl2anc 661 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( X  gcd  Y )  ||  X  /\  ( X  gcd  Y ) 
||  Y ) )
1918simpld 459 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  ||  X )
20 dvdsval2 14001 . . . . 5  |-  ( ( ( X  gcd  Y
)  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  X  e.  ZZ )  ->  (
( X  gcd  Y
)  ||  X  <->  ( X  /  ( X  gcd  Y ) )  e.  ZZ ) )
2120biimpa 484 . . . 4  |-  ( ( ( ( X  gcd  Y )  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  X  e.  ZZ )  /\  ( X  gcd  Y )  ||  X )  ->  ( X  /  ( X  gcd  Y ) )  e.  ZZ )
229, 16, 6, 19, 21syl31anc 1231 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  /  ( X  gcd  Y ) )  e.  ZZ )
2318simprd 463 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  ||  Y )
24 dvdsval2 14001 . . . . 5  |-  ( ( ( X  gcd  Y
)  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  Y  e.  ZZ )  ->  (
( X  gcd  Y
)  ||  Y  <->  ( Y  /  ( X  gcd  Y ) )  e.  ZZ ) )
2524biimpa 484 . . . 4  |-  ( ( ( ( X  gcd  Y )  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  Y  e.  ZZ )  /\  ( X  gcd  Y )  ||  Y )  ->  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )
269, 16, 7, 23, 25syl31anc 1231 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  /  ( X  gcd  Y ) )  e.  ZZ )
27 zringbas 18621 . . . . . . 7  |-  ZZ  =  ( Base ` ring )
28 qqhval2.0 . . . . . . 7  |-  B  =  ( Base `  R
)
2927, 28rhmf 17502 . . . . . 6  |-  ( L  e.  (ring RingHom  R )  ->  L : ZZ --> B )
305, 29syl 16 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L : ZZ --> B )
3130, 26ffvelrnd 6033 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B )
32 ffn 5737 . . . . . 6  |-  ( L : ZZ --> B  ->  L  Fn  ZZ )
3330, 32syl 16 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L  Fn  ZZ )
347zcnd 10991 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  CC )
359zcnd 10991 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  CC )
3634, 35, 10, 16divne0d 10357 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  /  ( X  gcd  Y ) )  =/=  0 )
37 ovex 6324 . . . . . . . . 9  |-  ( Y  /  ( X  gcd  Y ) )  e.  _V
3837elsnc 4056 . . . . . . . 8  |-  ( ( Y  /  ( X  gcd  Y ) )  e.  { 0 }  <-> 
( Y  /  ( X  gcd  Y ) )  =  0 )
3938necon3bbii 2718 . . . . . . 7  |-  ( -.  ( Y  /  ( X  gcd  Y ) )  e.  { 0 }  <-> 
( Y  /  ( X  gcd  Y ) )  =/=  0 )
4036, 39sylibr 212 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( Y  /  ( X  gcd  Y ) )  e.  { 0 } )
411ad2antrr 725 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  R  e.  Ring )
42 simplr 755 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
(chr `  R )  =  0 )
43 eqid 2457 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
4428, 2, 43zrhker 28119 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( (chr
`  R )  =  0  <->  ( `' L " { ( 0g `  R ) } )  =  { 0 } ) )
4544biimpa 484 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (chr `  R )  =  0 )  ->  ( `' L " { ( 0g
`  R ) } )  =  { 0 } )
4641, 42, 45syl2anc 661 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( `' L " { ( 0g `  R ) } )  =  { 0 } )
4740, 46neleqtrrd 2570 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )
48 elpreima 6008 . . . . . . . . 9  |-  ( L  Fn  ZZ  ->  (
( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } )  <-> 
( ( Y  / 
( X  gcd  Y
) )  e.  ZZ  /\  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) } ) ) )
4948baibd 909 . . . . . . . 8  |-  ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  -> 
( ( Y  / 
( X  gcd  Y
) )  e.  ( `' L " { ( 0g `  R ) } )  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  { ( 0g `  R ) } ) )
5049biimprd 223 . . . . . . 7  |-  ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  -> 
( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  { ( 0g `  R ) }  ->  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) ) )
5150con3dimp 441 . . . . . 6  |-  ( ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  /\  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  -.  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) } )
52 fvex 5882 . . . . . . . 8  |-  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e. 
_V
5352elsnc 4056 . . . . . . 7  |-  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) }  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =  ( 0g
`  R ) )
5453necon3bbii 2718 . . . . . 6  |-  ( -.  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) }  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g
`  R ) )
5551, 54sylib 196 . . . . 5  |-  ( ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  /\  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g
`  R ) )
5633, 26, 47, 55syl21anc 1227 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g `  R
) )
57 eqid 2457 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
5828, 57, 43drngunit 17528 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e.  (Unit `  R )  <->  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B  /\  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  =/=  ( 0g `  R
) ) ) )
5958ad2antrr 725 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )  <->  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B  /\  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  =/=  ( 0g `  R
) ) ) )
6031, 56, 59mpbir2and 922 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )
)
6130, 9ffvelrnd 6033 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  e.  B )
62 ovex 6324 . . . . . . . . 9  |-  ( X  gcd  Y )  e. 
_V
6362elsnc 4056 . . . . . . . 8  |-  ( ( X  gcd  Y )  e.  { 0 }  <-> 
( X  gcd  Y
)  =  0 )
6463necon3bbii 2718 . . . . . . 7  |-  ( -.  ( X  gcd  Y
)  e.  { 0 }  <->  ( X  gcd  Y )  =/=  0 )
6516, 64sylibr 212 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( X  gcd  Y
)  e.  { 0 } )
6665, 46neleqtrrd 2570 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( X  gcd  Y
)  e.  ( `' L " { ( 0g `  R ) } ) )
67 elpreima 6008 . . . . . . . . 9  |-  ( L  Fn  ZZ  ->  (
( X  gcd  Y
)  e.  ( `' L " { ( 0g `  R ) } )  <->  ( ( X  gcd  Y )  e.  ZZ  /\  ( L `
 ( X  gcd  Y ) )  e.  {
( 0g `  R
) } ) ) )
6867baibd 909 . . . . . . . 8  |-  ( ( L  Fn  ZZ  /\  ( X  gcd  Y )  e.  ZZ )  -> 
( ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } )  <->  ( L `  ( X  gcd  Y
) )  e.  {
( 0g `  R
) } ) )
6968biimprd 223 . . . . . . 7  |-  ( ( L  Fn  ZZ  /\  ( X  gcd  Y )  e.  ZZ )  -> 
( ( L `  ( X  gcd  Y ) )  e.  { ( 0g `  R ) }  ->  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) ) )
7069con3dimp 441 . . . . . 6  |-  ( ( ( L  Fn  ZZ  /\  ( X  gcd  Y
)  e.  ZZ )  /\  -.  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  -.  ( L `  ( X  gcd  Y ) )  e. 
{ ( 0g `  R ) } )
71 fvex 5882 . . . . . . . 8  |-  ( L `
 ( X  gcd  Y ) )  e.  _V
7271elsnc 4056 . . . . . . 7  |-  ( ( L `  ( X  gcd  Y ) )  e.  { ( 0g
`  R ) }  <-> 
( L `  ( X  gcd  Y ) )  =  ( 0g `  R ) )
7372necon3bbii 2718 . . . . . 6  |-  ( -.  ( L `  ( X  gcd  Y ) )  e.  { ( 0g
`  R ) }  <-> 
( L `  ( X  gcd  Y ) )  =/=  ( 0g `  R ) )
7470, 73sylib 196 . . . . 5  |-  ( ( ( L  Fn  ZZ  /\  ( X  gcd  Y
)  e.  ZZ )  /\  -.  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  ( L `  ( X  gcd  Y
) )  =/=  ( 0g `  R ) )
7533, 9, 66, 74syl21anc 1227 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  =/=  ( 0g `  R ) )
7628, 57, 43drngunit 17528 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( L `
 ( X  gcd  Y ) )  e.  (Unit `  R )  <->  ( ( L `  ( X  gcd  Y ) )  e.  B  /\  ( L `
 ( X  gcd  Y ) )  =/=  ( 0g `  R ) ) ) )
7776ad2antrr 725 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  gcd  Y ) )  e.  (Unit `  R )  <->  ( ( L `  ( X  gcd  Y ) )  e.  B  /\  ( L `
 ( X  gcd  Y ) )  =/=  ( 0g `  R ) ) ) )
7861, 75, 77mpbir2and 922 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  e.  (Unit `  R
) )
79 qqhval2.1 . . . 4  |-  ./  =  (/r
`  R )
80 zringmulr 18624 . . . 4  |-  x.  =  ( .r ` ring )
8157, 27, 79, 80rhmdvd 27972 . . 3  |-  ( ( L  e.  (ring RingHom  R )  /\  ( ( X  / 
( X  gcd  Y
) )  e.  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ  /\  ( X  gcd  Y )  e.  ZZ )  /\  (
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )  /\  ( L `  ( X  gcd  Y ) )  e.  (Unit `  R
) ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) ) ) )
825, 22, 26, 9, 60, 78, 81syl132anc 1246 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) ) ) )
83 divnumden 14293 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  NN )  ->  ( (numer `  ( X  /  Y ) )  =  ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  ( Y  /  ( X  gcd  Y ) ) ) )
846, 83sylan 471 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( (numer `  ( X  /  Y ) )  =  ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  ( Y  /  ( X  gcd  Y ) ) ) )
8584simpld 459 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  (numer `  ( X  /  Y ) )  =  ( X  /  ( X  gcd  Y ) ) )
8685eqcomd 2465 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( X  /  ( X  gcd  Y ) )  =  (numer `  ( X  /  Y ) ) )
8786fveq2d 5876 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( L `  ( X  /  ( X  gcd  Y ) ) )  =  ( L `  (numer `  ( X  /  Y
) ) ) )
8884simprd 463 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  (denom `  ( X  /  Y ) )  =  ( Y  /  ( X  gcd  Y ) ) )
8988eqcomd 2465 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( Y  /  ( X  gcd  Y ) )  =  (denom `  ( X  /  Y ) ) )
9089fveq2d 5876 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =  ( L `  (denom `  ( X  /  Y
) ) ) )
9187, 90oveq12d 6314 . . 3  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (numer `  ( X  /  Y
) ) )  ./  ( L `  (denom `  ( X  /  Y
) ) ) ) )
9222adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( X  / 
( X  gcd  Y
) )  e.  ZZ )
9392zcnd 10991 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( X  / 
( X  gcd  Y
) )  e.  CC )
9493mulm1d 10029 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( X  /  ( X  gcd  Y ) ) )  =  -u ( X  /  ( X  gcd  Y ) ) )
95 neg1cn 10660 . . . . . . . . 9  |-  -u 1  e.  CC
9695a1i 11 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  CC )
9796, 93mulcomd 9634 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( X  /  ( X  gcd  Y ) ) )  =  ( ( X  /  ( X  gcd  Y ) )  x.  -u 1 ) )
9894, 97eqtr3d 2500 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u ( X  / 
( X  gcd  Y
) )  =  ( ( X  /  ( X  gcd  Y ) )  x.  -u 1 ) )
9998fveq2d 5876 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u ( X  /  ( X  gcd  Y ) ) )  =  ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) ) )
10026adantr 465 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( Y  / 
( X  gcd  Y
) )  e.  ZZ )
101100zcnd 10991 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( Y  / 
( X  gcd  Y
) )  e.  CC )
102101mulm1d 10029 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( Y  /  ( X  gcd  Y ) ) )  =  -u ( Y  /  ( X  gcd  Y ) ) )
10396, 101mulcomd 9634 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( Y  /  ( X  gcd  Y ) ) )  =  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1 ) )
104102, 103eqtr3d 2500 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u ( Y  / 
( X  gcd  Y
) )  =  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1 ) )
105104fveq2d 5876 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u ( Y  /  ( X  gcd  Y ) ) )  =  ( L `
 ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) )
10699, 105oveq12d 6314 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 -u ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
1076adantr 465 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  X  e.  ZZ )
1087adantr 465 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  Y  e.  ZZ )
109 simpr 461 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u Y  e.  NN )
110 divnumden2 27769 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  -u Y  e.  NN )  ->  (
(numer `  ( X  /  Y ) )  = 
-u ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  -u ( Y  /  ( X  gcd  Y ) ) ) )
111107, 108, 109, 110syl3anc 1228 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( (numer `  ( X  /  Y
) )  =  -u ( X  /  ( X  gcd  Y ) )  /\  (denom `  ( X  /  Y ) )  =  -u ( Y  / 
( X  gcd  Y
) ) ) )
112111simpld 459 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  (numer `  ( X  /  Y ) )  =  -u ( X  / 
( X  gcd  Y
) ) )
113112fveq2d 5876 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  (numer `  ( X  /  Y ) ) )  =  ( L `  -u ( X  /  ( X  gcd  Y ) ) ) )
114111simprd 463 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  (denom `  ( X  /  Y ) )  =  -u ( Y  / 
( X  gcd  Y
) ) )
115114fveq2d 5876 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  (denom `  ( X  /  Y ) ) )  =  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) )
116113, 115oveq12d 6314 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 (numer `  ( X  /  Y ) ) )  ./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  -u ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) ) )
1175adantr 465 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  L  e.  (ring RingHom  R
) )
118 1zzd 10916 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  1  e.  ZZ )
119118znegcld 10992 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  ZZ )
12060adantr 465 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R ) )
121 neg1z 10921 . . . . . . . 8  |-  -u 1  e.  ZZ
122 ax-1cn 9567 . . . . . . . . . 10  |-  1  e.  CC
123122absnegi 13244 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
124 abs1 13142 . . . . . . . . 9  |-  ( abs `  1 )  =  1
125123, 124eqtri 2486 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
126 zringunit 18647 . . . . . . . 8  |-  ( -u
1  e.  (Unit ` ring )  <->  (
-u 1  e.  ZZ  /\  ( abs `  -u 1
)  =  1 ) )
127121, 125, 126mpbir2an 920 . . . . . . 7  |-  -u 1  e.  (Unit ` ring )
128127a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  (Unit ` ring ) )
129 elrhmunit 27971 . . . . . 6  |-  ( ( L  e.  (ring RingHom  R )  /\  -u 1  e.  (Unit ` ring )
)  ->  ( L `  -u 1 )  e.  (Unit `  R )
)
130117, 128, 129syl2anc 661 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u 1 )  e.  (Unit `  R ) )
13157, 27, 79, 80rhmdvd 27972 . . . . 5  |-  ( ( L  e.  (ring RingHom  R )  /\  ( ( X  / 
( X  gcd  Y
) )  e.  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ  /\  -u 1  e.  ZZ )  /\  (
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )  /\  ( L `  -u 1
)  e.  (Unit `  R ) ) )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
132117, 92, 100, 119, 120, 130, 131syl132anc 1246 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
133106, 116, 1323eqtr4rd 2509 . . 3  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 (numer `  ( X  /  Y ) ) )  ./  ( L `  (denom `  ( X  /  Y ) ) ) ) )
134 simp3 998 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  Y  =/=  0 )
135134neneqd 2659 . . . . 5  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  -.  Y  =  0 )
136 simp2 997 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
137 elz 10887 . . . . . . . 8  |-  ( Y  e.  ZZ  <->  ( Y  e.  RR  /\  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) ) )
138136, 137sylib 196 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  e.  RR  /\  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) ) )
139138simprd 463 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) )
140 3orass 976 . . . . . 6  |-  ( ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN )  <-> 
( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) ) )
141139, 140sylib 196 . . . . 5  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) ) )
142 orel1 382 . . . . 5  |-  ( -.  Y  =  0  -> 
( ( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) )  -> 
( Y  e.  NN  \/  -u Y  e.  NN ) ) )
143135, 141, 142sylc 60 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  e.  NN  \/  -u Y  e.  NN ) )
144143adantl 466 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  e.  NN  \/  -u Y  e.  NN ) )
14591, 133, 144mpjaodan 786 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (numer `  ( X  /  Y
) ) )  ./  ( L `  (denom `  ( X  /  Y
) ) ) ) )
1466zcnd 10991 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  CC )
147146, 35, 16divcan1d 10342 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( X  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) )  =  X )
148147fveq2d 5876 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  =  ( L `  X
) )
14934, 35, 16divcan1d 10342 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( Y  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) )  =  Y )
150149fveq2d 5876 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  (
( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  =  ( L `  Y
) )
151148, 150oveq12d 6314 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( ( X  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) ) ) )  =  ( ( L `  X
)  ./  ( L `  Y ) ) )
15282, 145, 1513eqtr3d 2506 1  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  X ) 
./  ( L `  Y ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    \/ w3o 972    /\ w3a 973    = wceq 1395    e. wcel 1819    =/= wne 2652   {csn 4032   class class class wbr 4456   `'ccnv 5007   "cima 5011    Fn wfn 5589   -->wf 5590   ` cfv 5594  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    x. cmul 9514   -ucneg 9825    / cdiv 10227   NNcn 10556   ZZcz 10885   abscabs 13079    || cdvds 13998    gcd cgcd 14156  numercnumer 14278  denomcdenom 14279   Basecbs 14644   0gc0g 14857   Ringcrg 17325  Unitcui 17415  /rcdvr 17458   RingHom crh 17488   DivRingcdr 17523  ℤringzring 18615   ZRHomczrh 18664  chrcchr 18666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-rep 4568  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-inf2 8075  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587  ax-addf 9588  ax-mulf 9589
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-int 4289  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-tpos 6973  df-recs 7060  df-rdg 7094  df-1o 7148  df-oadd 7152  df-er 7329  df-map 7440  df-en 7536  df-dom 7537  df-sdom 7538  df-fin 7539  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-4 10617  df-5 10618  df-6 10619  df-7 10620  df-8 10621  df-9 10622  df-10 10623  df-n0 10817  df-z 10886  df-dec 11001  df-uz 11107  df-q 11208  df-rp 11246  df-fz 11698  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-numer 14280  df-denom 14281  df-gz 14460  df-struct 14646  df-ndx 14647  df-slot 14648  df-base 14649  df-sets 14650  df-ress 14651  df-plusg 14725  df-mulr 14726  df-starv 14727  df-tset 14731  df-ple 14732  df-ds 14734  df-unif 14735  df-0g 14859  df-mgm 15999  df-sgrp 16038  df-mnd 16048  df-mhm 16093  df-grp 16184  df-minusg 16185  df-sbg 16186  df-mulg 16187  df-subg 16325  df-ghm 16392  df-od 16680  df-cmn 16927  df-mgp 17269  df-ur 17281  df-ring 17327  df-cring 17328  df-oppr 17399  df-dvdsr 17417  df-unit 17418  df-invr 17448  df-dvr 17459  df-rnghom 17491  df-drng 17525  df-subrg 17554  df-cnfld 18548  df-zring 18616  df-zrh 18668  df-chr 18670
This theorem is referenced by:  qqhval2  28124  qqhvq  28129
  Copyright terms: Public domain W3C validator