Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2lem Unicode version

Theorem qqhval2lem 24318
Description: Lemma for qqhval2 24319 (Contributed by Thierry Arnoux, 29-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0  |-  B  =  ( Base `  R
)
qqhval2.1  |-  ./  =  (/r
`  R )
qqhval2.2  |-  L  =  ( ZRHom `  R
)
Assertion
Ref Expression
qqhval2lem  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  X ) 
./  ( L `  Y ) ) )

Proof of Theorem qqhval2lem
StepHypRef Expression
1 drngrng 15797 . . . . 5  |-  ( R  e.  DivRing  ->  R  e.  Ring )
2 eqid 2404 . . . . . 6  |-  (flds  ZZ )  =  (flds  ZZ )
3 qqhval2.2 . . . . . 6  |-  L  =  ( ZRHom `  R
)
42, 3zrhrhm 16748 . . . . 5  |-  ( R  e.  Ring  ->  L  e.  ( (flds  ZZ ) RingHom  R ) )
51, 4syl 16 . . . 4  |-  ( R  e.  DivRing  ->  L  e.  ( (flds  ZZ ) RingHom  R ) )
65ad2antrr 707 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L  e.  ( (flds  ZZ ) RingHom  R ) )
7 simpr1 963 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  ZZ )
8 simpr2 964 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  ZZ )
97, 8gcdcld 12973 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  NN0 )
109nn0zd 10329 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  ZZ )
11 simpr3 965 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  =/=  0 )
12 gcdeq0 12976 . . . . . . . . 9  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  =  0  <->  ( X  =  0  /\  Y  =  0 ) ) )
1312simplbda 608 . . . . . . . 8  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  ( X  gcd  Y )  =  0 )  ->  Y  =  0 )
1413ex 424 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  =  0  ->  Y  =  0 ) )
1514necon3d 2605 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( Y  =/=  0  ->  ( X  gcd  Y
)  =/=  0 ) )
1615imp 419 . . . . 5  |-  ( ( ( X  e.  ZZ  /\  Y  e.  ZZ )  /\  Y  =/=  0
)  ->  ( X  gcd  Y )  =/=  0
)
177, 8, 11, 16syl21anc 1183 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  =/=  0 )
18 gcddvds 12970 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ )  ->  ( ( X  gcd  Y )  ||  X  /\  ( X  gcd  Y ) 
||  Y ) )
197, 8, 18syl2anc 643 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( X  gcd  Y )  ||  X  /\  ( X  gcd  Y ) 
||  Y ) )
2019simpld 446 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  ||  X )
21 dvdsval2 12810 . . . . 5  |-  ( ( ( X  gcd  Y
)  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  X  e.  ZZ )  ->  (
( X  gcd  Y
)  ||  X  <->  ( X  /  ( X  gcd  Y ) )  e.  ZZ ) )
2221biimpa 471 . . . 4  |-  ( ( ( ( X  gcd  Y )  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  X  e.  ZZ )  /\  ( X  gcd  Y )  ||  X )  ->  ( X  /  ( X  gcd  Y ) )  e.  ZZ )
2310, 17, 7, 20, 22syl31anc 1187 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  /  ( X  gcd  Y ) )  e.  ZZ )
2419simprd 450 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  ||  Y )
25 dvdsval2 12810 . . . . 5  |-  ( ( ( X  gcd  Y
)  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  Y  e.  ZZ )  ->  (
( X  gcd  Y
)  ||  Y  <->  ( Y  /  ( X  gcd  Y ) )  e.  ZZ ) )
2625biimpa 471 . . . 4  |-  ( ( ( ( X  gcd  Y )  e.  ZZ  /\  ( X  gcd  Y )  =/=  0  /\  Y  e.  ZZ )  /\  ( X  gcd  Y )  ||  Y )  ->  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )
2710, 17, 8, 24, 26syl31anc 1187 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  /  ( X  gcd  Y ) )  e.  ZZ )
282zzsbase 24216 . . . . . . 7  |-  ZZ  =  ( Base `  (flds  ZZ ) )
29 qqhval2.0 . . . . . . 7  |-  B  =  ( Base `  R
)
3028, 29rhmf 15782 . . . . . 6  |-  ( L  e.  ( (flds  ZZ ) RingHom  R )  ->  L : ZZ --> B )
316, 30syl 16 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L : ZZ --> B )
3231, 27ffvelrnd 5830 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B )
33 ffn 5550 . . . . . 6  |-  ( L : ZZ --> B  ->  L  Fn  ZZ )
3431, 33syl 16 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  L  Fn  ZZ )
358zcnd 10332 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  Y  e.  CC )
3610zcnd 10332 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( X  gcd  Y
)  e.  CC )
3735, 36, 11, 17divne0d 9762 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  /  ( X  gcd  Y ) )  =/=  0 )
38 ovex 6065 . . . . . . . . 9  |-  ( Y  /  ( X  gcd  Y ) )  e.  _V
3938elsnc 3797 . . . . . . . 8  |-  ( ( Y  /  ( X  gcd  Y ) )  e.  { 0 }  <-> 
( Y  /  ( X  gcd  Y ) )  =  0 )
4039necon3bbii 2598 . . . . . . 7  |-  ( -.  ( Y  /  ( X  gcd  Y ) )  e.  { 0 }  <-> 
( Y  /  ( X  gcd  Y ) )  =/=  0 )
4137, 40sylibr 204 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( Y  /  ( X  gcd  Y ) )  e.  { 0 } )
421ad2antrr 707 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  R  e.  Ring )
43 simplr 732 . . . . . . 7  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
(chr `  R )  =  0 )
44 eqid 2404 . . . . . . . . 9  |-  ( 0g
`  R )  =  ( 0g `  R
)
4529, 3, 44zrhker 24314 . . . . . . . 8  |-  ( R  e.  Ring  ->  ( (chr
`  R )  =  0  <->  ( `' L " { ( 0g `  R ) } )  =  { 0 } ) )
4645biimpa 471 . . . . . . 7  |-  ( ( R  e.  Ring  /\  (chr `  R )  =  0 )  ->  ( `' L " { ( 0g
`  R ) } )  =  { 0 } )
4742, 43, 46syl2anc 643 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( `' L " { ( 0g `  R ) } )  =  { 0 } )
4841, 47neleqtrrd 2500 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )
49 elpreima 5809 . . . . . . . . 9  |-  ( L  Fn  ZZ  ->  (
( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } )  <-> 
( ( Y  / 
( X  gcd  Y
) )  e.  ZZ  /\  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) } ) ) )
5049baibd 876 . . . . . . . 8  |-  ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  -> 
( ( Y  / 
( X  gcd  Y
) )  e.  ( `' L " { ( 0g `  R ) } )  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  { ( 0g `  R ) } ) )
5150biimprd 215 . . . . . . 7  |-  ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  -> 
( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  { ( 0g `  R ) }  ->  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) ) )
5251con3and 429 . . . . . 6  |-  ( ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  /\  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  -.  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) } )
53 fvex 5701 . . . . . . . 8  |-  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e. 
_V
5453elsnc 3797 . . . . . . 7  |-  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) }  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =  ( 0g
`  R ) )
5554necon3bbii 2598 . . . . . 6  |-  ( -.  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e. 
{ ( 0g `  R ) }  <->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g
`  R ) )
5652, 55sylib 189 . . . . 5  |-  ( ( ( L  Fn  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ )  /\  -.  ( Y  /  ( X  gcd  Y ) )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g
`  R ) )
5734, 27, 48, 56syl21anc 1183 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  =/=  ( 0g `  R
) )
58 eqid 2404 . . . . . 6  |-  (Unit `  R )  =  (Unit `  R )
5929, 58, 44drngunit 15795 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e.  (Unit `  R )  <->  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B  /\  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  =/=  ( 0g `  R
) ) ) )
6059ad2antrr 707 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )  <->  ( ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  B  /\  ( L `
 ( Y  / 
( X  gcd  Y
) ) )  =/=  ( 0g `  R
) ) ) )
6132, 57, 60mpbir2and 889 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R )
)
6231, 10ffvelrnd 5830 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  e.  B )
63 ovex 6065 . . . . . . . . 9  |-  ( X  gcd  Y )  e. 
_V
6463elsnc 3797 . . . . . . . 8  |-  ( ( X  gcd  Y )  e.  { 0 }  <-> 
( X  gcd  Y
)  =  0 )
6564necon3bbii 2598 . . . . . . 7  |-  ( -.  ( X  gcd  Y
)  e.  { 0 }  <->  ( X  gcd  Y )  =/=  0 )
6617, 65sylibr 204 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( X  gcd  Y
)  e.  { 0 } )
6766, 47neleqtrrd 2500 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  -.  ( X  gcd  Y
)  e.  ( `' L " { ( 0g `  R ) } ) )
68 elpreima 5809 . . . . . . . . 9  |-  ( L  Fn  ZZ  ->  (
( X  gcd  Y
)  e.  ( `' L " { ( 0g `  R ) } )  <->  ( ( X  gcd  Y )  e.  ZZ  /\  ( L `
 ( X  gcd  Y ) )  e.  {
( 0g `  R
) } ) ) )
6968baibd 876 . . . . . . . 8  |-  ( ( L  Fn  ZZ  /\  ( X  gcd  Y )  e.  ZZ )  -> 
( ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } )  <->  ( L `  ( X  gcd  Y
) )  e.  {
( 0g `  R
) } ) )
7069biimprd 215 . . . . . . 7  |-  ( ( L  Fn  ZZ  /\  ( X  gcd  Y )  e.  ZZ )  -> 
( ( L `  ( X  gcd  Y ) )  e.  { ( 0g `  R ) }  ->  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) ) )
7170con3and 429 . . . . . 6  |-  ( ( ( L  Fn  ZZ  /\  ( X  gcd  Y
)  e.  ZZ )  /\  -.  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  -.  ( L `  ( X  gcd  Y ) )  e. 
{ ( 0g `  R ) } )
72 fvex 5701 . . . . . . . 8  |-  ( L `
 ( X  gcd  Y ) )  e.  _V
7372elsnc 3797 . . . . . . 7  |-  ( ( L `  ( X  gcd  Y ) )  e.  { ( 0g
`  R ) }  <-> 
( L `  ( X  gcd  Y ) )  =  ( 0g `  R ) )
7473necon3bbii 2598 . . . . . 6  |-  ( -.  ( L `  ( X  gcd  Y ) )  e.  { ( 0g
`  R ) }  <-> 
( L `  ( X  gcd  Y ) )  =/=  ( 0g `  R ) )
7571, 74sylib 189 . . . . 5  |-  ( ( ( L  Fn  ZZ  /\  ( X  gcd  Y
)  e.  ZZ )  /\  -.  ( X  gcd  Y )  e.  ( `' L " { ( 0g `  R ) } ) )  ->  ( L `  ( X  gcd  Y
) )  =/=  ( 0g `  R ) )
7634, 10, 67, 75syl21anc 1183 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  =/=  ( 0g `  R ) )
7729, 58, 44drngunit 15795 . . . . 5  |-  ( R  e.  DivRing  ->  ( ( L `
 ( X  gcd  Y ) )  e.  (Unit `  R )  <->  ( ( L `  ( X  gcd  Y ) )  e.  B  /\  ( L `
 ( X  gcd  Y ) )  =/=  ( 0g `  R ) ) ) )
7877ad2antrr 707 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  gcd  Y ) )  e.  (Unit `  R )  <->  ( ( L `  ( X  gcd  Y ) )  e.  B  /\  ( L `
 ( X  gcd  Y ) )  =/=  ( 0g `  R ) ) ) )
7962, 76, 78mpbir2and 889 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  ( X  gcd  Y ) )  e.  (Unit `  R
) )
80 qqhval2.1 . . . 4  |-  ./  =  (/r
`  R )
812zzsmulr 24219 . . . 4  |-  x.  =  ( .r `  (flds  ZZ ) )
8258, 28, 80, 81rhmdvd 24212 . . 3  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  R )  /\  (
( X  /  ( X  gcd  Y ) )  e.  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ  /\  ( X  gcd  Y
)  e.  ZZ )  /\  ( ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e.  (Unit `  R )  /\  ( L `  ( X  gcd  Y ) )  e.  (Unit `  R
) ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) ) ) )
836, 23, 27, 10, 61, 79, 82syl132anc 1202 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) ) ) )
84 divnumden 13095 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  NN )  ->  ( (numer `  ( X  /  Y ) )  =  ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  ( Y  /  ( X  gcd  Y ) ) ) )
857, 84sylan 458 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( (numer `  ( X  /  Y ) )  =  ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  ( Y  /  ( X  gcd  Y ) ) ) )
8685simpld 446 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  (numer `  ( X  /  Y ) )  =  ( X  /  ( X  gcd  Y ) ) )
8786eqcomd 2409 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( X  /  ( X  gcd  Y ) )  =  (numer `  ( X  /  Y ) ) )
8887fveq2d 5691 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( L `  ( X  /  ( X  gcd  Y ) ) )  =  ( L `  (numer `  ( X  /  Y
) ) ) )
8985simprd 450 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  (denom `  ( X  /  Y ) )  =  ( Y  /  ( X  gcd  Y ) ) )
9089eqcomd 2409 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( Y  /  ( X  gcd  Y ) )  =  (denom `  ( X  /  Y ) ) )
9190fveq2d 5691 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  =  ( L `  (denom `  ( X  /  Y
) ) ) )
9288, 91oveq12d 6058 . . 3  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  Y  e.  NN )  ->  ( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (numer `  ( X  /  Y
) ) )  ./  ( L `  (denom `  ( X  /  Y
) ) ) ) )
9323adantr 452 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( X  / 
( X  gcd  Y
) )  e.  ZZ )
9493zcnd 10332 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( X  / 
( X  gcd  Y
) )  e.  CC )
9594mulm1d 9441 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( X  /  ( X  gcd  Y ) ) )  =  -u ( X  /  ( X  gcd  Y ) ) )
96 neg1cn 10023 . . . . . . . . 9  |-  -u 1  e.  CC
9796a1i 11 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  CC )
9897, 94mulcomd 9065 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( X  /  ( X  gcd  Y ) ) )  =  ( ( X  /  ( X  gcd  Y ) )  x.  -u 1 ) )
9995, 98eqtr3d 2438 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u ( X  / 
( X  gcd  Y
) )  =  ( ( X  /  ( X  gcd  Y ) )  x.  -u 1 ) )
10099fveq2d 5691 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u ( X  /  ( X  gcd  Y ) ) )  =  ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) ) )
10127adantr 452 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( Y  / 
( X  gcd  Y
) )  e.  ZZ )
102101zcnd 10332 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( Y  / 
( X  gcd  Y
) )  e.  CC )
103102mulm1d 9441 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( Y  /  ( X  gcd  Y ) ) )  =  -u ( Y  /  ( X  gcd  Y ) ) )
10497, 102mulcomd 9065 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( -u 1  x.  ( Y  /  ( X  gcd  Y ) ) )  =  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1 ) )
105103, 104eqtr3d 2438 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u ( Y  / 
( X  gcd  Y
) )  =  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1 ) )
106105fveq2d 5691 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u ( Y  /  ( X  gcd  Y ) ) )  =  ( L `
 ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) )
107100, 106oveq12d 6058 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 -u ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
1087adantr 452 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  X  e.  ZZ )
1098adantr 452 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  Y  e.  ZZ )
110 simpr 448 . . . . . . . 8  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u Y  e.  NN )
111 divnumden2 24114 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  -u Y  e.  NN )  ->  (
(numer `  ( X  /  Y ) )  = 
-u ( X  / 
( X  gcd  Y
) )  /\  (denom `  ( X  /  Y
) )  =  -u ( Y  /  ( X  gcd  Y ) ) ) )
112108, 109, 110, 111syl3anc 1184 . . . . . . 7  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( (numer `  ( X  /  Y
) )  =  -u ( X  /  ( X  gcd  Y ) )  /\  (denom `  ( X  /  Y ) )  =  -u ( Y  / 
( X  gcd  Y
) ) ) )
113112simpld 446 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  (numer `  ( X  /  Y ) )  =  -u ( X  / 
( X  gcd  Y
) ) )
114113fveq2d 5691 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  (numer `  ( X  /  Y ) ) )  =  ( L `  -u ( X  /  ( X  gcd  Y ) ) ) )
115112simprd 450 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  (denom `  ( X  /  Y ) )  =  -u ( Y  / 
( X  gcd  Y
) ) )
116115fveq2d 5691 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  (denom `  ( X  /  Y ) ) )  =  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) )
117114, 116oveq12d 6058 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 (numer `  ( X  /  Y ) ) )  ./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  -u ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  -u ( Y  /  ( X  gcd  Y ) ) ) ) )
1186adantr 452 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  L  e.  ( (flds  ZZ ) RingHom  R ) )
119 1z 10267 . . . . . . 7  |-  1  e.  ZZ
120119a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  1  e.  ZZ )
121120znegcld 10333 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  ZZ )
12261adantr 452 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  ( Y  /  ( X  gcd  Y ) ) )  e.  (Unit `  R ) )
123 znegcl 10269 . . . . . . . . 9  |-  ( 1  e.  ZZ  ->  -u 1  e.  ZZ )
124119, 123ax-mp 8 . . . . . . . 8  |-  -u 1  e.  ZZ
125 ax-1cn 9004 . . . . . . . . . 10  |-  1  e.  CC
126125absnegi 12158 . . . . . . . . 9  |-  ( abs `  -u 1 )  =  ( abs `  1
)
127 abs1 12057 . . . . . . . . 9  |-  ( abs `  1 )  =  1
128126, 127eqtri 2424 . . . . . . . 8  |-  ( abs `  -u 1 )  =  1
1292zrngunit 16720 . . . . . . . 8  |-  ( -u
1  e.  (Unit `  (flds  ZZ ) )  <->  ( -u 1  e.  ZZ  /\  ( abs `  -u 1 )  =  1 ) )
130124, 128, 129mpbir2an 887 . . . . . . 7  |-  -u 1  e.  (Unit `  (flds  ZZ ) )
131130a1i 11 . . . . . 6  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  -u 1  e.  (Unit `  (flds  ZZ ) ) )
132 elrhmunit 24211 . . . . . 6  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  R )  /\  -u 1  e.  (Unit `  (flds  ZZ ) ) )  ->  ( L `  -u 1 )  e.  (Unit `  R ) )
133118, 131, 132syl2anc 643 . . . . 5  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( L `  -u 1 )  e.  (Unit `  R ) )
13458, 28, 80, 81rhmdvd 24212 . . . . 5  |-  ( ( L  e.  ( (flds  ZZ ) RingHom  R )  /\  (
( X  /  ( X  gcd  Y ) )  e.  ZZ  /\  ( Y  /  ( X  gcd  Y ) )  e.  ZZ  /\  -u 1  e.  ZZ )  /\  ( ( L `
 ( Y  / 
( X  gcd  Y
) ) )  e.  (Unit `  R )  /\  ( L `  -u 1
)  e.  (Unit `  R ) ) )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
135118, 93, 101, 121, 122, 133, 134syl132anc 1202 . . . 4  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 ( ( X  /  ( X  gcd  Y ) )  x.  -u 1
) )  ./  ( L `  ( ( Y  /  ( X  gcd  Y ) )  x.  -u 1
) ) ) )
136107, 117, 1353eqtr4rd 2447 . . 3  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  /\  -u Y  e.  NN )  ->  ( ( L `
 ( X  / 
( X  gcd  Y
) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `
 (numer `  ( X  /  Y ) ) )  ./  ( L `  (denom `  ( X  /  Y ) ) ) ) )
137 simp3 959 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  Y  =/=  0 )
138137neneqd 2583 . . . . 5  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  -.  Y  =  0 )
139 simp2 958 . . . . . . . 8  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  Y  e.  ZZ )
140 elz 10240 . . . . . . . 8  |-  ( Y  e.  ZZ  <->  ( Y  e.  RR  /\  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) ) )
141139, 140sylib 189 . . . . . . 7  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  e.  RR  /\  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) ) )
142141simprd 450 . . . . . 6  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN ) )
143 3orass 939 . . . . . 6  |-  ( ( Y  =  0  \/  Y  e.  NN  \/  -u Y  e.  NN )  <-> 
( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) ) )
144142, 143sylib 189 . . . . 5  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) ) )
145 orel1 372 . . . . 5  |-  ( -.  Y  =  0  -> 
( ( Y  =  0  \/  ( Y  e.  NN  \/  -u Y  e.  NN ) )  -> 
( Y  e.  NN  \/  -u Y  e.  NN ) ) )
146138, 144, 145sylc 58 . . . 4  |-  ( ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 )  ->  ( Y  e.  NN  \/  -u Y  e.  NN ) )
147146adantl 453 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( Y  e.  NN  \/  -u Y  e.  NN ) )
14892, 136, 147mpjaodan 762 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( X  /  ( X  gcd  Y ) ) )  ./  ( L `  ( Y  /  ( X  gcd  Y ) ) ) )  =  ( ( L `  (numer `  ( X  /  Y
) ) )  ./  ( L `  (denom `  ( X  /  Y
) ) ) ) )
1497zcnd 10332 . . . . 5  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  ->  X  e.  CC )
150149, 36, 17divcan1d 9747 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( X  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) )  =  X )
151150fveq2d 5691 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  (
( X  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  =  ( L `  X
) )
15235, 36, 17divcan1d 9747 . . . 4  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( Y  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) )  =  Y )
153152fveq2d 5691 . . 3  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( L `  (
( Y  /  ( X  gcd  Y ) )  x.  ( X  gcd  Y ) ) )  =  ( L `  Y
) )
154151, 153oveq12d 6058 . 2  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  ( ( X  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) ) )  ./  ( L `  ( ( Y  / 
( X  gcd  Y
) )  x.  ( X  gcd  Y ) ) ) )  =  ( ( L `  X
)  ./  ( L `  Y ) ) )
15583, 148, 1543eqtr3d 2444 1  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  ( X  e.  ZZ  /\  Y  e.  ZZ  /\  Y  =/=  0 ) )  -> 
( ( L `  (numer `  ( X  /  Y ) ) ) 
./  ( L `  (denom `  ( X  /  Y ) ) ) )  =  ( ( L `  X ) 
./  ( L `  Y ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    \/ w3o 935    /\ w3a 936    = wceq 1649    e. wcel 1721    =/= wne 2567   {csn 3774   class class class wbr 4172   `'ccnv 4836   "cima 4840    Fn wfn 5408   -->wf 5409   ` cfv 5413  (class class class)co 6040   CCcc 8944   RRcr 8945   0cc0 8946   1c1 8947    x. cmul 8951   -ucneg 9248    / cdiv 9633   NNcn 9956   ZZcz 10238   abscabs 11994    || cdivides 12807    gcd cgcd 12961  numercnumer 13080  denomcdenom 13081   Basecbs 13424   ↾s cress 13425   0gc0g 13678   Ringcrg 15615  Unitcui 15699  /rcdvr 15742   RingHom crh 15772   DivRingcdr 15790  ℂfldccnfld 16658   ZRHomczrh 16733  chrcchr 16735
This theorem is referenced by:  qqhval2  24319  qqhvq  24324
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-inf2 7552  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023  ax-pre-sup 9024  ax-addf 9025  ax-mulf 9026
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-1st 6308  df-2nd 6309  df-tpos 6438  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-div 9634  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-q 10531  df-rp 10569  df-fz 11000  df-fl 11157  df-mod 11206  df-seq 11279  df-exp 11338  df-cj 11859  df-re 11860  df-im 11861  df-sqr 11995  df-abs 11996  df-dvds 12808  df-gcd 12962  df-numer 13082  df-denom 13083  df-gz 13253  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-sets 13430  df-ress 13431  df-plusg 13497  df-mulr 13498  df-starv 13499  df-tset 13503  df-ple 13504  df-ds 13506  df-unif 13507  df-0g 13682  df-mnd 14645  df-mhm 14693  df-grp 14767  df-minusg 14768  df-sbg 14769  df-mulg 14770  df-subg 14896  df-ghm 14959  df-od 15122  df-cmn 15369  df-mgp 15604  df-rng 15618  df-cring 15619  df-ur 15620  df-oppr 15683  df-dvdsr 15701  df-unit 15702  df-invr 15732  df-dvr 15743  df-rnghom 15774  df-drng 15792  df-subrg 15821  df-cnfld 16659  df-zrh 16737  df-chr 16739
  Copyright terms: Public domain W3C validator