Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhval2 Structured version   Visualization version   Unicode version

Theorem qqhval2 28798
Description: Value of the canonical homormorphism from the rational number when the target ring is a division ring. (Contributed by Thierry Arnoux, 26-Oct-2017.)
Hypotheses
Ref Expression
qqhval2.0  |-  B  =  ( Base `  R
)
qqhval2.1  |-  ./  =  (/r
`  R )
qqhval2.2  |-  L  =  ( ZRHom `  R
)
Assertion
Ref Expression
qqhval2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  =  ( q  e.  QQ  |->  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) )
Distinct variable groups:    ./ , q    B, q    L, q    R, q

Proof of Theorem qqhval2
Dummy variables  x  y  e  s are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3056 . . . 4  |-  ( R  e.  DivRing  ->  R  e.  _V )
21adantr 467 . . 3  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  R  e.  _V )
3 qqhval2.1 . . . 4  |-  ./  =  (/r
`  R )
4 eqid 2453 . . . 4  |-  ( 1r
`  R )  =  ( 1r `  R
)
5 qqhval2.2 . . . 4  |-  L  =  ( ZRHom `  R
)
63, 4, 5qqhval 28790 . . 3  |-  ( R  e.  _V  ->  (QQHom `  R )  =  ran  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
72, 6syl 17 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  =  ran  (
x  e.  ZZ , 
y  e.  ( `' L " (Unit `  R ) )  |->  <.
( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
8 eqidd 2454 . . . 4  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ZZ  =  ZZ )
9 qqhval2.0 . . . . 5  |-  B  =  ( Base `  R
)
10 eqid 2453 . . . . 5  |-  ( 0g
`  R )  =  ( 0g `  R
)
119, 5, 10zrhunitpreima 28794 . . . 4  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( `' L " (Unit `  R
) )  =  ( ZZ  \  { 0 } ) )
12 mpt2eq12 6356 . . . 4  |-  ( ( ZZ  =  ZZ  /\  ( `' L " (Unit `  R ) )  =  ( ZZ  \  {
0 } ) )  ->  ( x  e.  ZZ ,  y  e.  ( `' L "
(Unit `  R )
)  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  ( x  e.  ZZ ,  y  e.  ( ZZ  \  { 0 } ) 
|->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
) )
138, 11, 12syl2anc 667 . . 3  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( x  e.  ZZ ,  y  e.  ( `' L "
(Unit `  R )
)  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  ( x  e.  ZZ ,  y  e.  ( ZZ  \  { 0 } ) 
|->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
) )
1413rneqd 5065 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ran  ( x  e.  ZZ ,  y  e.  ( `' L " (Unit `  R )
)  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  ran  (
x  e.  ZZ , 
y  e.  ( ZZ 
\  { 0 } )  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
) )
15 nfv 1763 . . . 4  |-  F/ e ( R  e.  DivRing  /\  (chr `  R )  =  0 )
16 nfab1 2596 . . . 4  |-  F/_ e { e  |  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >. }
17 nfcv 2594 . . . 4  |-  F/_ e { <. q ,  s
>.  |  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) ) }
18 simpr 463 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  e  =  <. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)
19 zssq 11278 . . . . . . . . . . . 12  |-  ZZ  C_  QQ
20 simplrl 771 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  x  e.  ZZ )
2119, 20sseldi 3432 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  x  e.  QQ )
22 simplrr 772 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  y  e.  ( ZZ  \  { 0 } ) )
2322eldifad 3418 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  y  e.  ZZ )
2419, 23sseldi 3432 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  y  e.  QQ )
2522eldifbd 3419 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  -.  y  e.  { 0 } )
26 elsn 3984 . . . . . . . . . . . . 13  |-  ( y  e.  { 0 }  <-> 
y  =  0 )
2726necon3bbii 2673 . . . . . . . . . . . 12  |-  ( -.  y  e.  { 0 }  <->  y  =/=  0
)
2825, 27sylib 200 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  y  =/=  0 )
29 qdivcl 11292 . . . . . . . . . . 11  |-  ( ( x  e.  QQ  /\  y  e.  QQ  /\  y  =/=  0 )  ->  (
x  /  y )  e.  QQ )
3021, 24, 28, 29syl3anc 1269 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  ( x  /  y )  e.  QQ )
31 simplll 769 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  R  e.  DivRing )
32 simpllr 770 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  (chr `  R
)  =  0 )
339, 3, 5qqhval2lem 28797 . . . . . . . . . . . 12  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ  /\  y  =/=  0 ) )  -> 
( ( L `  (numer `  ( x  / 
y ) ) ) 
./  ( L `  (denom `  ( x  / 
y ) ) ) )  =  ( ( L `  x ) 
./  ( L `  y ) ) )
3433eqcomd 2459 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  ZZ  /\  y  e.  ZZ  /\  y  =/=  0 ) )  -> 
( ( L `  x )  ./  ( L `  y )
)  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) )
3531, 32, 20, 23, 28, 34syl23anc 1276 . . . . . . . . . 10  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  ( ( L `  x )  ./  ( L `  y
) )  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) )
36 ovex 6323 . . . . . . . . . . 11  |-  ( x  /  y )  e. 
_V
37 ovex 6323 . . . . . . . . . . 11  |-  ( ( L `  x ) 
./  ( L `  y ) )  e. 
_V
38 opeq12 4171 . . . . . . . . . . . . 13  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  ->  <. q ,  s >.  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
3938eqeq2d 2463 . . . . . . . . . . . 12  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( e  =  <. q ,  s >.  <->  e  =  <. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
) )
40 simpl 459 . . . . . . . . . . . . . 14  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
q  =  ( x  /  y ) )
4140eleq1d 2515 . . . . . . . . . . . . 13  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( q  e.  QQ  <->  ( x  /  y )  e.  QQ ) )
42 simpr 463 . . . . . . . . . . . . . 14  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
s  =  ( ( L `  x ) 
./  ( L `  y ) ) )
4340fveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
(numer `  q )  =  (numer `  ( x  /  y ) ) )
4443fveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( L `  (numer `  q ) )  =  ( L `  (numer `  ( x  /  y
) ) ) )
4540fveq2d 5874 . . . . . . . . . . . . . . . 16  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
(denom `  q )  =  (denom `  ( x  /  y ) ) )
4645fveq2d 5874 . . . . . . . . . . . . . . 15  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( L `  (denom `  q ) )  =  ( L `  (denom `  ( x  /  y
) ) ) )
4744, 46oveq12d 6313 . . . . . . . . . . . . . 14  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) )  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) )
4842, 47eqeq12d 2468 . . . . . . . . . . . . 13  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) )  <-> 
( ( L `  x )  ./  ( L `  y )
)  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) ) )
4941, 48anbi12d 718 . . . . . . . . . . . 12  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) )  <->  ( (
x  /  y )  e.  QQ  /\  (
( L `  x
)  ./  ( L `  y ) )  =  ( ( L `  (numer `  ( x  / 
y ) ) ) 
./  ( L `  (denom `  ( x  / 
y ) ) ) ) ) ) )
5039, 49anbi12d 718 . . . . . . . . . . 11  |-  ( ( q  =  ( x  /  y )  /\  s  =  ( ( L `  x )  ./  ( L `  y
) ) )  -> 
( ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) )  <->  ( e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.  /\  ( ( x  / 
y )  e.  QQ  /\  ( ( L `  x )  ./  ( L `  y )
)  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) ) ) ) )
5136, 37, 50spc2ev 3144 . . . . . . . . . 10  |-  ( ( e  =  <. (
x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >.  /\  (
( x  /  y
)  e.  QQ  /\  ( ( L `  x )  ./  ( L `  y )
)  =  ( ( L `  (numer `  ( x  /  y
) ) )  ./  ( L `  (denom `  ( x  /  y
) ) ) ) ) )  ->  E. q E. s ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) ) )
5218, 30, 35, 51syl12anc 1267 . . . . . . . . 9  |-  ( ( ( ( R  e.  DivRing 
/\  (chr `  R
)  =  0 )  /\  ( x  e.  ZZ  /\  y  e.  ( ZZ  \  {
0 } ) ) )  /\  e  = 
<. ( x  /  y
) ,  ( ( L `  x ) 
./  ( L `  y ) ) >.
)  ->  E. q E. s ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) ) )
5352ex 436 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
x  e.  ZZ  /\  y  e.  ( ZZ  \  { 0 } ) ) )  ->  (
e  =  <. (
x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >.  ->  E. q E. s ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) ) ) )
5453rexlimdvva 2888 . . . . . . 7  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.  ->  E. q E. s
( e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) ) )
5554imp 431 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  ->  E. q E. s ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) ) )
56 19.42vv 1838 . . . . . . 7  |-  ( E. q E. s ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  <->  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  E. q E. s ( e  = 
<. q ,  s >.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) ) ) )
57 simprrl 775 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  q  e.  QQ )
58 qnumcl 14701 . . . . . . . . . 10  |-  ( q  e.  QQ  ->  (numer `  q )  e.  ZZ )
5957, 58syl 17 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  (numer `  q )  e.  ZZ )
60 qdencl 14702 . . . . . . . . . . . 12  |-  ( q  e.  QQ  ->  (denom `  q )  e.  NN )
6157, 60syl 17 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  (denom `  q )  e.  NN )
6261nnzd 11046 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  (denom `  q )  e.  ZZ )
63 nnne0 10649 . . . . . . . . . . 11  |-  ( (denom `  q )  e.  NN  ->  (denom `  q )  =/=  0 )
64 elsni 3995 . . . . . . . . . . . 12  |-  ( (denom `  q )  e.  {
0 }  ->  (denom `  q )  =  0 )
6564necon3ai 2651 . . . . . . . . . . 11  |-  ( (denom `  q )  =/=  0  ->  -.  (denom `  q
)  e.  { 0 } )
6661, 63, 653syl 18 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  -.  (denom `  q )  e. 
{ 0 } )
6762, 66eldifd 3417 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  (denom `  q )  e.  ( ZZ  \  { 0 } ) )
68 simprl 765 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  e  =  <. q ,  s
>. )
69 qeqnumdivden 14707 . . . . . . . . . . . 12  |-  ( q  e.  QQ  ->  q  =  ( (numer `  q )  /  (denom `  q ) ) )
7057, 69syl 17 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  q  =  ( (numer `  q )  /  (denom `  q ) ) )
71 simprrr 776 . . . . . . . . . . 11  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  s  =  ( ( L `
 (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) )
7270, 71opeq12d 4177 . . . . . . . . . 10  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  <. q ,  s >.  =  <. ( (numer `  q )  /  (denom `  q )
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) )
>. )
7368, 72eqtrd 2487 . . . . . . . . 9  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  e  =  <. ( (numer `  q )  /  (denom `  q ) ) ,  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) >. )
74 oveq1 6302 . . . . . . . . . . . 12  |-  ( x  =  (numer `  q
)  ->  ( x  /  y )  =  ( (numer `  q
)  /  y ) )
75 fveq2 5870 . . . . . . . . . . . . 13  |-  ( x  =  (numer `  q
)  ->  ( L `  x )  =  ( L `  (numer `  q ) ) )
7675oveq1d 6310 . . . . . . . . . . . 12  |-  ( x  =  (numer `  q
)  ->  ( ( L `  x )  ./  ( L `  y
) )  =  ( ( L `  (numer `  q ) )  ./  ( L `  y ) ) )
7774, 76opeq12d 4177 . . . . . . . . . . 11  |-  ( x  =  (numer `  q
)  ->  <. ( x  /  y ) ,  ( ( L `  x )  ./  ( L `  y )
) >.  =  <. (
(numer `  q )  /  y ) ,  ( ( L `  (numer `  q ) ) 
./  ( L `  y ) ) >.
)
7877eqeq2d 2463 . . . . . . . . . 10  |-  ( x  =  (numer `  q
)  ->  ( e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.  <->  e  =  <. ( (numer `  q )  /  y
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  y ) ) >. ) )
79 oveq2 6303 . . . . . . . . . . . 12  |-  ( y  =  (denom `  q
)  ->  ( (numer `  q )  /  y
)  =  ( (numer `  q )  /  (denom `  q ) ) )
80 fveq2 5870 . . . . . . . . . . . . 13  |-  ( y  =  (denom `  q
)  ->  ( L `  y )  =  ( L `  (denom `  q ) ) )
8180oveq2d 6311 . . . . . . . . . . . 12  |-  ( y  =  (denom `  q
)  ->  ( ( L `  (numer `  q
) )  ./  ( L `  y )
)  =  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) )
8279, 81opeq12d 4177 . . . . . . . . . . 11  |-  ( y  =  (denom `  q
)  ->  <. ( (numer `  q )  /  y
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  y ) ) >.  =  <. ( (numer `  q )  /  (denom `  q )
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) )
>. )
8382eqeq2d 2463 . . . . . . . . . 10  |-  ( y  =  (denom `  q
)  ->  ( e  =  <. ( (numer `  q )  /  y
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  y ) ) >.  <->  e  =  <. ( (numer `  q )  /  (denom `  q )
) ,  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) )
>. ) )
8478, 83rspc2ev 3163 . . . . . . . . 9  |-  ( ( (numer `  q )  e.  ZZ  /\  (denom `  q )  e.  ( ZZ  \  { 0 } )  /\  e  =  <. ( (numer `  q )  /  (denom `  q ) ) ,  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) >. )  ->  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
8559, 67, 73, 84syl3anc 1269 . . . . . . . 8  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
8685exlimivv 1780 . . . . . . 7  |-  ( E. q E. s ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  (
e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
8756, 86sylbir 217 . . . . . 6  |-  ( ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  /\  E. q E. s ( e  =  <. q ,  s
>.  /\  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) ) ) )  ->  E. x  e.  ZZ  E. y  e.  ( ZZ 
\  { 0 } ) e  =  <. ( x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >. )
8855, 87impbida 844 . . . . 5  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.  <->  E. q E. s ( e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) ) )
89 abid 2441 . . . . 5  |-  ( e  e.  { e  |  E. x  e.  ZZ  E. y  e.  ( ZZ 
\  { 0 } ) e  =  <. ( x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >. }  <->  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
90 elopab 4712 . . . . 5  |-  ( e  e.  { <. q ,  s >.  |  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) }  <->  E. q E. s
( e  =  <. q ,  s >.  /\  (
q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) ) )
9188, 89, 903bitr4g 292 . . . 4  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( e  e.  { e  |  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >. } 
<->  e  e.  { <. q ,  s >.  |  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) } ) )
9215, 16, 17, 91eqrd 3452 . . 3  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  { e  |  E. x  e.  ZZ  E. y  e.  ( ZZ 
\  { 0 } ) e  =  <. ( x  /  y ) ,  ( ( L `
 x )  ./  ( L `  y ) ) >. }  =  { <. q ,  s >.  |  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q ) ) 
./  ( L `  (denom `  q ) ) ) ) } )
93 eqid 2453 . . . 4  |-  ( x  e.  ZZ ,  y  e.  ( ZZ  \  { 0 } ) 
|->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  ( x  e.  ZZ ,  y  e.  ( ZZ  \  { 0 } ) 
|->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)
9493rnmpt2 6411 . . 3  |-  ran  (
x  e.  ZZ , 
y  e.  ( ZZ 
\  { 0 } )  |->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  { e  |  E. x  e.  ZZ  E. y  e.  ( ZZ  \  {
0 } ) e  =  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >. }
95 df-mpt 4466 . . 3  |-  ( q  e.  QQ  |->  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) )  =  { <. q ,  s >.  |  ( q  e.  QQ  /\  s  =  ( ( L `  (numer `  q
) )  ./  ( L `  (denom `  q
) ) ) ) }
9692, 94, 953eqtr4g 2512 . 2  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ran  ( x  e.  ZZ ,  y  e.  ( ZZ  \  { 0 } ) 
|->  <. ( x  / 
y ) ,  ( ( L `  x
)  ./  ( L `  y ) ) >.
)  =  ( q  e.  QQ  |->  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) )
977, 14, 963eqtrd 2491 1  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  =  ( q  e.  QQ  |->  ( ( L `  (numer `  q ) )  ./  ( L `  (denom `  q ) ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 371    /\ w3a 986    = wceq 1446   E.wex 1665    e. wcel 1889   {cab 2439    =/= wne 2624   E.wrex 2740   _Vcvv 3047    \ cdif 3403   {csn 3970   <.cop 3976   {copab 4463    |-> cmpt 4464   `'ccnv 4836   ran crn 4838   "cima 4840   ` cfv 5585  (class class class)co 6295    |-> cmpt2 6297   0cc0 9544    / cdiv 10276   NNcn 10616   ZZcz 10944   QQcq 11271  numercnumer 14694  denomcdenom 14695   Basecbs 15133   0gc0g 15350   1rcur 17747  Unitcui 17879  /rcdvr 17922   DivRingcdr 17987   ZRHomczrh 19083  chrcchr 19085  QQHomcqqh 28788
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1671  ax-4 1684  ax-5 1760  ax-6 1807  ax-7 1853  ax-8 1891  ax-9 1898  ax-10 1917  ax-11 1922  ax-12 1935  ax-13 2093  ax-ext 2433  ax-rep 4518  ax-sep 4528  ax-nul 4537  ax-pow 4584  ax-pr 4642  ax-un 6588  ax-inf2 8151  ax-cnex 9600  ax-resscn 9601  ax-1cn 9602  ax-icn 9603  ax-addcl 9604  ax-addrcl 9605  ax-mulcl 9606  ax-mulrcl 9607  ax-mulcom 9608  ax-addass 9609  ax-mulass 9610  ax-distr 9611  ax-i2m1 9612  ax-1ne0 9613  ax-1rid 9614  ax-rnegex 9615  ax-rrecex 9616  ax-cnre 9617  ax-pre-lttri 9618  ax-pre-lttrn 9619  ax-pre-ltadd 9620  ax-pre-mulgt0 9621  ax-pre-sup 9622  ax-addf 9623  ax-mulf 9624
This theorem depends on definitions:  df-bi 189  df-or 372  df-an 373  df-3or 987  df-3an 988  df-tru 1449  df-ex 1666  df-nf 1670  df-sb 1800  df-eu 2305  df-mo 2306  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2583  df-ne 2626  df-nel 2627  df-ral 2744  df-rex 2745  df-reu 2746  df-rmo 2747  df-rab 2748  df-v 3049  df-sbc 3270  df-csb 3366  df-dif 3409  df-un 3411  df-in 3413  df-ss 3420  df-pss 3422  df-nul 3734  df-if 3884  df-pw 3955  df-sn 3971  df-pr 3973  df-tp 3975  df-op 3977  df-uni 4202  df-int 4238  df-iun 4283  df-br 4406  df-opab 4465  df-mpt 4466  df-tr 4501  df-eprel 4748  df-id 4752  df-po 4758  df-so 4759  df-fr 4796  df-we 4798  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-pred 5383  df-ord 5429  df-on 5430  df-lim 5431  df-suc 5432  df-iota 5549  df-fun 5587  df-fn 5588  df-f 5589  df-f1 5590  df-fo 5591  df-f1o 5592  df-fv 5593  df-riota 6257  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6698  df-1st 6798  df-2nd 6799  df-tpos 6978  df-wrecs 7033  df-recs 7095  df-rdg 7133  df-1o 7187  df-oadd 7191  df-er 7368  df-map 7479  df-en 7575  df-dom 7576  df-sdom 7577  df-fin 7578  df-sup 7961  df-inf 7962  df-pnf 9682  df-mnf 9683  df-xr 9684  df-ltxr 9685  df-le 9686  df-sub 9867  df-neg 9868  df-div 10277  df-nn 10617  df-2 10675  df-3 10676  df-4 10677  df-5 10678  df-6 10679  df-7 10680  df-8 10681  df-9 10682  df-10 10683  df-n0 10877  df-z 10945  df-dec 11059  df-uz 11167  df-q 11272  df-rp 11310  df-fz 11792  df-fl 12035  df-mod 12104  df-seq 12221  df-exp 12280  df-cj 13174  df-re 13175  df-im 13176  df-sqrt 13310  df-abs 13311  df-dvds 14318  df-gcd 14481  df-numer 14696  df-denom 14697  df-gz 14886  df-struct 15135  df-ndx 15136  df-slot 15137  df-base 15138  df-sets 15139  df-ress 15140  df-plusg 15215  df-mulr 15216  df-starv 15217  df-tset 15221  df-ple 15222  df-ds 15224  df-unif 15225  df-0g 15352  df-mgm 16500  df-sgrp 16539  df-mnd 16549  df-mhm 16594  df-grp 16685  df-minusg 16686  df-sbg 16687  df-mulg 16688  df-subg 16826  df-ghm 16893  df-od 17184  df-cmn 17444  df-mgp 17736  df-ur 17748  df-ring 17794  df-cring 17795  df-oppr 17863  df-dvdsr 17881  df-unit 17882  df-invr 17912  df-dvr 17923  df-rnghom 17955  df-drng 17989  df-subrg 18018  df-cnfld 18983  df-zring 19052  df-zrh 19087  df-chr 19089  df-qqh 28789
This theorem is referenced by:  qqhvval  28799  qqhf  28802
  Copyright terms: Public domain W3C validator