Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  qqhcn Structured version   Unicode version

Theorem qqhcn 27804
Description: The QQHom homomorphism is a continuous function. (Contributed by Thierry Arnoux, 9-Nov-2017.)
Hypotheses
Ref Expression
qqhcn.q  |-  Q  =  (flds  QQ )
qqhcn.j  |-  J  =  ( TopOpen `  Q )
qqhcn.z  |-  Z  =  ( ZMod `  R
)
qqhcn.k  |-  K  =  ( TopOpen `  R )
Assertion
Ref Expression
qqhcn  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( J  Cn  K ) )

Proof of Theorem qqhcn
Dummy variables  e 
d  q are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3724 . . . . . . . 8  |-  (NrmRing  i^i  DivRing )  C_  DivRing
21sseli 3505 . . . . . . 7  |-  ( R  e.  (NrmRing  i^i  DivRing )  ->  R  e.  DivRing )
323ad2ant1 1017 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  R  e.  DivRing )
4 simp3 998 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (chr `  R
)  =  0 )
5 eqid 2467 . . . . . . 7  |-  ( Base `  R )  =  (
Base `  R )
6 eqid 2467 . . . . . . 7  |-  (/r `  R
)  =  (/r `  R
)
7 eqid 2467 . . . . . . 7  |-  ( ZRHom `  R )  =  ( ZRHom `  R )
85, 6, 7qqhf 27799 . . . . . 6  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
) : QQ --> ( Base `  R ) )
93, 4, 8syl2anc 661 . . . . 5  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
) : QQ --> ( Base `  R ) )
10 simpr 461 . . . . . . 7  |-  ( ( ( R  e.  (NrmRing  i^i 
DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  -> 
e  e.  RR+ )
11 qsscn 11205 . . . . . . . . . . . . . 14  |-  QQ  C_  CC
12 simpr 461 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  q  e.  QQ )
1311, 12sseldi 3507 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  q  e.  CC )
14 0cn 9600 . . . . . . . . . . . . . . 15  |-  0  e.  CC
15 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( abs 
o.  -  )  =  ( abs  o.  -  )
1615cnmetdval 21144 . . . . . . . . . . . . . . 15  |-  ( ( 0  e.  CC  /\  q  e.  CC )  ->  ( 0 ( abs 
o.  -  ) q
)  =  ( abs `  ( 0  -  q
) ) )
1714, 16mpan 670 . . . . . . . . . . . . . 14  |-  ( q  e.  CC  ->  (
0 ( abs  o.  -  ) q )  =  ( abs `  (
0  -  q ) ) )
18 df-neg 9820 . . . . . . . . . . . . . . . 16  |-  -u q  =  ( 0  -  q )
1918fveq2i 5875 . . . . . . . . . . . . . . 15  |-  ( abs `  -u q )  =  ( abs `  (
0  -  q ) )
2019a1i 11 . . . . . . . . . . . . . 14  |-  ( q  e.  CC  ->  ( abs `  -u q )  =  ( abs `  (
0  -  q ) ) )
21 absneg 13089 . . . . . . . . . . . . . 14  |-  ( q  e.  CC  ->  ( abs `  -u q )  =  ( abs `  q
) )
2217, 20, 213eqtr2d 2514 . . . . . . . . . . . . 13  |-  ( q  e.  CC  ->  (
0 ( abs  o.  -  ) q )  =  ( abs `  q
) )
2313, 22syl 16 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
0 ( abs  o.  -  ) q )  =  ( abs `  q
) )
24 zssq 11201 . . . . . . . . . . . . . . 15  |-  ZZ  C_  QQ
25 0z 10887 . . . . . . . . . . . . . . 15  |-  0  e.  ZZ
2624, 25sselii 3506 . . . . . . . . . . . . . 14  |-  0  e.  QQ
2726a1i 11 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  0  e.  QQ )
2827, 12ovresd 6438 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
0 ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( 0 ( abs  o.  -  ) q ) )
29 eqid 2467 . . . . . . . . . . . . . 14  |-  ( norm `  R )  =  (
norm `  R )
30 qqhcn.z . . . . . . . . . . . . . 14  |-  Z  =  ( ZMod `  R
)
3129, 30qqhnm 27803 . . . . . . . . . . . . 13  |-  ( ( ( R  e.  (NrmRing  i^i 
DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  q  e.  QQ )  ->  ( ( norm `  R
) `  ( (QQHom `  R ) `  q
) )  =  ( abs `  q ) )
3231adantlr 714 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( norm `  R ) `  ( (QQHom `  R
) `  q )
)  =  ( abs `  q ) )
3323, 28, 323eqtr4d 2518 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
0 ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( ( norm `  R
) `  ( (QQHom `  R ) `  q
) ) )
349ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (QQHom `  R ) : QQ --> ( Base `  R )
)
3534, 27ffvelrnd 6033 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  0 )  e.  ( Base `  R
) )
3634, 12ffvelrnd 6033 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  q )  e.  (
Base `  R )
)
3735, 36ovresd 6438 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  =  ( ( (QQHom `  R
) `  0 )
( dist `  R )
( (QQHom `  R
) `  q )
) )
38 inss1 3723 . . . . . . . . . . . . . . . . 17  |-  (NrmRing  i^i  DivRing )  C_ NrmRing
3938sseli 3505 . . . . . . . . . . . . . . . 16  |-  ( R  e.  (NrmRing  i^i  DivRing )  ->  R  e. NrmRing )
40393ad2ant1 1017 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  R  e. NrmRing )
4140ad2antrr 725 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  R  e. NrmRing )
42 nrgngp 21037 . . . . . . . . . . . . . 14  |-  ( R  e. NrmRing  ->  R  e. NrmGrp )
4341, 42syl 16 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  R  e. NrmGrp )
44 eqid 2467 . . . . . . . . . . . . . 14  |-  ( -g `  R )  =  (
-g `  R )
45 eqid 2467 . . . . . . . . . . . . . 14  |-  ( dist `  R )  =  (
dist `  R )
4629, 5, 44, 45ngpdsr 20990 . . . . . . . . . . . . 13  |-  ( ( R  e. NrmGrp  /\  (
(QQHom `  R ) `  0 )  e.  ( Base `  R
)  /\  ( (QQHom `  R ) `  q
)  e.  ( Base `  R ) )  -> 
( ( (QQHom `  R ) `  0
) ( dist `  R
) ( (QQHom `  R ) `  q
) )  =  ( ( norm `  R
) `  ( (
(QQHom `  R ) `  q ) ( -g `  R ) ( (QQHom `  R ) `  0
) ) ) )
4743, 35, 36, 46syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  0 )
( dist `  R )
( (QQHom `  R
) `  q )
)  =  ( (
norm `  R ) `  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  0
) ) ) )
483ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  R  e.  DivRing )
494ad2antrr 725 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (chr `  R )  =  0 )
505, 6, 7qqh0 27797 . . . . . . . . . . . . . . . 16  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  ( (QQHom `  R ) `  0
)  =  ( 0g
`  R ) )
5148, 49, 50syl2anc 661 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
(QQHom `  R ) `  0 )  =  ( 0g `  R
) )
5251oveq2d 6311 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  q )
( -g `  R ) ( (QQHom `  R
) `  0 )
)  =  ( ( (QQHom `  R ) `  q ) ( -g `  R ) ( 0g
`  R ) ) )
53 ngpgrp 20985 . . . . . . . . . . . . . . . 16  |-  ( R  e. NrmGrp  ->  R  e.  Grp )
5443, 53syl 16 . . . . . . . . . . . . . . 15  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  R  e.  Grp )
55 eqid 2467 . . . . . . . . . . . . . . . 16  |-  ( 0g
`  R )  =  ( 0g `  R
)
565, 55, 44grpsubid1 15994 . . . . . . . . . . . . . . 15  |-  ( ( R  e.  Grp  /\  ( (QQHom `  R ) `  q )  e.  (
Base `  R )
)  ->  ( (
(QQHom `  R ) `  q ) ( -g `  R ) ( 0g
`  R ) )  =  ( (QQHom `  R ) `  q
) )
5754, 36, 56syl2anc 661 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  q )
( -g `  R ) ( 0g `  R
) )  =  ( (QQHom `  R ) `  q ) )
5852, 57eqtrd 2508 . . . . . . . . . . . . 13  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  q )
( -g `  R ) ( (QQHom `  R
) `  0 )
)  =  ( (QQHom `  R ) `  q
) )
5958fveq2d 5876 . . . . . . . . . . . 12  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( norm `  R ) `  ( ( (QQHom `  R ) `  q
) ( -g `  R
) ( (QQHom `  R ) `  0
) ) )  =  ( ( norm `  R
) `  ( (QQHom `  R ) `  q
) ) )
6037, 47, 593eqtrd 2512 . . . . . . . . . . 11  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  =  ( ( norm `  R
) `  ( (QQHom `  R ) `  q
) ) )
6133, 60eqtr4d 2511 . . . . . . . . . 10  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
0 ( ( abs 
o.  -  )  |`  ( QQ  X.  QQ ) ) q )  =  ( ( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) ) )
6261breq1d 4463 . . . . . . . . 9  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  <->  ( (
(QQHom `  R ) `  0 ) ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) )
6362biimpd 207 . . . . . . . 8  |-  ( ( ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  /\  q  e.  QQ )  ->  (
( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) )
6463ralrimiva 2881 . . . . . . 7  |-  ( ( ( R  e.  (NrmRing  i^i 
DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  ->  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) )
65 breq2 4457 . . . . . . . . . 10  |-  ( d  =  e  ->  (
( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  <->  ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e
) )
6665imbi1d 317 . . . . . . . . 9  |-  ( d  =  e  ->  (
( ( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
)  <->  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  e  ->  ( ( (QQHom `  R ) `  0
) ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ( (QQHom `  R ) `  q ) )  < 
e ) ) )
6766ralbidv 2906 . . . . . . . 8  |-  ( d  =  e  ->  ( A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
)  <->  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) ) )
6867rspcev 3219 . . . . . . 7  |-  ( ( e  e.  RR+  /\  A. q  e.  QQ  (
( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  e  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) )  ->  E. d  e.  RR+  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  0
) ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ( (QQHom `  R ) `  q ) )  < 
e ) )
6910, 64, 68syl2anc 661 . . . . . 6  |-  ( ( ( R  e.  (NrmRing  i^i 
DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  0
) ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ( (QQHom `  R ) `  q ) )  < 
e ) )
7069ralrimiva 2881 . . . . 5  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  A. e  e.  RR+  E. d  e.  RR+  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) q )  <  d  ->  (
( (QQHom `  R
) `  0 )
( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ( (QQHom `  R ) `  q
) )  <  e
) )
71 qqhcn.q . . . . . . . 8  |-  Q  =  (flds  QQ )
72 cnfldxms 21150 . . . . . . . . 9  |-fld  e.  *MetSp
73 qex 11206 . . . . . . . . 9  |-  QQ  e.  _V
74 ressxms 20894 . . . . . . . . 9  |-  ( (fld  e. 
*MetSp  /\  QQ  e.  _V )  ->  (flds  QQ )  e.  *MetSp )
7572, 73, 74mp2an 672 . . . . . . . 8  |-  (flds  QQ )  e.  *MetSp
7671, 75eqeltri 2551 . . . . . . 7  |-  Q  e. 
*MetSp
7771qrngbas 23668 . . . . . . . 8  |-  QQ  =  ( Base `  Q )
78 cnfldds 18298 . . . . . . . . . 10  |-  ( abs 
o.  -  )  =  ( dist ` fld )
7971, 78ressds 14685 . . . . . . . . 9  |-  ( QQ  e.  _V  ->  ( abs  o.  -  )  =  ( dist `  Q
) )
8073, 79ax-mp 5 . . . . . . . 8  |-  ( abs 
o.  -  )  =  ( dist `  Q )
8177, 80xmsxmet2 20828 . . . . . . 7  |-  ( Q  e.  *MetSp  ->  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) )  e.  ( *Met `  QQ ) )
8276, 81mp1i 12 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) )  e.  ( *Met `  QQ ) )
83 ngpxms 20987 . . . . . . . . 9  |-  ( R  e. NrmGrp  ->  R  e.  *MetSp )
8439, 42, 833syl 20 . . . . . . . 8  |-  ( R  e.  (NrmRing  i^i  DivRing )  ->  R  e.  *MetSp )
85843ad2ant1 1017 . . . . . . 7  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  R  e.  *MetSp )
865, 45xmsxmet2 20828 . . . . . . 7  |-  ( R  e.  *MetSp  ->  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  e.  ( *Met `  ( Base `  R
) ) )
8785, 86syl 16 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  e.  ( *Met `  ( Base `  R
) ) )
8826a1i 11 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  0  e.  QQ )
89 qqhcn.j . . . . . . . . 9  |-  J  =  ( TopOpen `  Q )
9080reseq1i 5275 . . . . . . . . 9  |-  ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) )  =  ( ( dist `  Q
)  |`  ( QQ  X.  QQ ) )
9189, 77, 90xmstopn 20820 . . . . . . . 8  |-  ( Q  e.  *MetSp  ->  J  =  ( MetOpen `  (
( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) ) )
9276, 91ax-mp 5 . . . . . . 7  |-  J  =  ( MetOpen `  ( ( abs  o.  -  )  |`  ( QQ  X.  QQ ) ) )
93 eqid 2467 . . . . . . 7  |-  ( MetOpen `  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) )  =  (
MetOpen `  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) )
9492, 93metcnp 20910 . . . . . 6  |-  ( ( ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) )  e.  ( *Met `  QQ )  /\  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  e.  ( *Met `  ( Base `  R
) )  /\  0  e.  QQ )  ->  (
(QQHom `  R )  e.  ( ( J  CnP  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) ) `  0
)  <->  ( (QQHom `  R ) : QQ --> ( Base `  R )  /\  A. e  e.  RR+  E. d  e.  RR+  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  0
) ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ( (QQHom `  R ) `  q ) )  < 
e ) ) ) )
9582, 87, 88, 94syl3anc 1228 . . . . 5  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( (QQHom `  R )  e.  ( ( J  CnP  ( MetOpen
`  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ) ) `  0 )  <-> 
( (QQHom `  R
) : QQ --> ( Base `  R )  /\  A. e  e.  RR+  E. d  e.  RR+  A. q  e.  QQ  ( ( 0 ( ( abs  o.  -  )  |`  ( QQ 
X.  QQ ) ) q )  <  d  ->  ( ( (QQHom `  R ) `  0
) ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ( (QQHom `  R ) `  q ) )  < 
e ) ) ) )
969, 70, 95mpbir2and 920 . . . 4  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( ( J  CnP  ( MetOpen `  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ) ) ` 
0 ) )
97 qqhcn.k . . . . . . . 8  |-  K  =  ( TopOpen `  R )
98 eqid 2467 . . . . . . . 8  |-  ( (
dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) )  =  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) )
9997, 5, 98xmstopn 20820 . . . . . . 7  |-  ( R  e.  *MetSp  ->  K  =  ( MetOpen `  (
( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
10085, 99syl 16 . . . . . 6  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  K  =  ( MetOpen `  ( ( dist `  R )  |`  ( ( Base `  R
)  X.  ( Base `  R ) ) ) ) )
101100oveq2d 6311 . . . . 5  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( J  CnP  K )  =  ( J  CnP  ( MetOpen `  ( ( dist `  R
)  |`  ( ( Base `  R )  X.  ( Base `  R ) ) ) ) ) )
102101fveq1d 5874 . . . 4  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( ( J  CnP  K ) ` 
0 )  =  ( ( J  CnP  ( MetOpen
`  ( ( dist `  R )  |`  (
( Base `  R )  X.  ( Base `  R
) ) ) ) ) `  0 ) )
10396, 102eleqtrrd 2558 . . 3  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( ( J  CnP  K ) `
 0 ) )
104 cnfldtgp 21239 . . . . . 6  |-fld  e.  TopGrp
105 qsubdrg 18338 . . . . . . . 8  |-  ( QQ  e.  (SubRing ` fld )  /\  (flds  QQ )  e.  DivRing )
106105simpli 458 . . . . . . 7  |-  QQ  e.  (SubRing ` fld )
107 subrgsubg 17304 . . . . . . 7  |-  ( QQ  e.  (SubRing ` fld )  ->  QQ  e.  (SubGrp ` fld ) )
108106, 107ax-mp 5 . . . . . 6  |-  QQ  e.  (SubGrp ` fld )
10971subgtgp 20470 . . . . . 6  |-  ( (fld  e. 
TopGrp  /\  QQ  e.  (SubGrp ` fld ) )  ->  Q  e.  TopGrp )
110104, 108, 109mp2an 672 . . . . 5  |-  Q  e. 
TopGrp
111 tgptmd 20444 . . . . 5  |-  ( Q  e.  TopGrp  ->  Q  e. TopMnd )
112110, 111mp1i 12 . . . 4  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  Q  e. TopMnd )
113 nrgtrg 21064 . . . . 5  |-  ( R  e. NrmRing  ->  R  e.  TopRing )
114 trgtmd2 20537 . . . . 5  |-  ( R  e.  TopRing  ->  R  e. TopMnd )
11540, 113, 1143syl 20 . . . 4  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  R  e. TopMnd )
1165, 6, 7, 71qqhghm 27801 . . . . 5  |-  ( ( R  e.  DivRing  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( Q 
GrpHom  R ) )
1173, 4, 116syl2anc 661 . . . 4  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( Q 
GrpHom  R ) )
11877, 89, 97ghmcnp 20479 . . . 4  |-  ( ( Q  e. TopMnd  /\  R  e. TopMnd  /\  (QQHom `  R )  e.  ( Q  GrpHom  R ) )  ->  ( (QQHom `  R )  e.  ( ( J  CnP  K
) `  0 )  <->  ( 0  e.  QQ  /\  (QQHom `  R )  e.  ( J  Cn  K
) ) ) )
119112, 115, 117, 118syl3anc 1228 . . 3  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( (QQHom `  R )  e.  ( ( J  CnP  K
) `  0 )  <->  ( 0  e.  QQ  /\  (QQHom `  R )  e.  ( J  Cn  K
) ) ) )
120103, 119mpbid 210 . 2  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  ( 0  e.  QQ  /\  (QQHom `  R )  e.  ( J  Cn  K ) ) )
121120simprd 463 1  |-  ( ( R  e.  (NrmRing  i^i  DivRing )  /\  Z  e. NrmMod  /\  (chr `  R )  =  0 )  ->  (QQHom `  R
)  e.  ( J  Cn  K ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767   A.wral 2817   E.wrex 2818   _Vcvv 3118    i^i cin 3480   class class class wbr 4453    X. cxp 5003    |` cres 5007    o. ccom 5009   -->wf 5590   ` cfv 5594  (class class class)co 6295   CCcc 9502   0cc0 9504    < clt 9640    - cmin 9817   -ucneg 9818   ZZcz 10876   QQcq 11194   RR+crp 11232   abscabs 13046   Basecbs 14506   ↾s cress 14507   distcds 14580   TopOpenctopn 14693   0gc0g 14711   Grpcgrp 15924   -gcsg 15926  SubGrpcsubg 16066    GrpHom cghm 16135  /rcdvr 17201   DivRingcdr 17265  SubRingcsubrg 17294   *Metcxmt 18271   MetOpencmopn 18276  ℂfldccnfld 18288   ZRHomczrh 18404   ZModczlm 18405  chrcchr 18406    Cn ccn 19591    CnP ccnp 19592  TopMndctmd 20435   TopGrpctgp 20436   TopRingctrg 20524   *MetSpcxme 20686   normcnm 20963  NrmGrpcngp 20964  NrmRingcnrg 20966  NrmModcnlm 20967  QQHomcqqh 27785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-inf2 8070  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-pre-sup 9582  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-iin 4334  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-se 4845  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-isom 5603  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-of 6535  df-om 6696  df-1st 6795  df-2nd 6796  df-supp 6914  df-tpos 6967  df-recs 7054  df-rdg 7088  df-1o 7142  df-2o 7143  df-oadd 7146  df-er 7323  df-map 7434  df-ixp 7482  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-fsupp 7842  df-fi 7883  df-sup 7913  df-oi 7947  df-card 8332  df-cda 8560  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-rp 11233  df-xneg 11330  df-xadd 11331  df-xmul 11332  df-ico 11547  df-icc 11548  df-fz 11685  df-fzo 11805  df-fl 11909  df-mod 11977  df-seq 12088  df-exp 12147  df-hash 12386  df-cj 12911  df-re 12912  df-im 12913  df-sqrt 13047  df-abs 13048  df-dvds 13864  df-gcd 14020  df-numer 14143  df-denom 14144  df-gz 14323  df-struct 14508  df-ndx 14509  df-slot 14510  df-base 14511  df-sets 14512  df-ress 14513  df-plusg 14584  df-mulr 14585  df-starv 14586  df-sca 14587  df-vsca 14588  df-ip 14589  df-tset 14590  df-ple 14591  df-ds 14593  df-unif 14594  df-hom 14595  df-cco 14596  df-rest 14694  df-topn 14695  df-0g 14713  df-gsum 14714  df-topgen 14715  df-pt 14716  df-prds 14719  df-xrs 14773  df-qtop 14778  df-imas 14779  df-xps 14781  df-mre 14857  df-mrc 14858  df-acs 14860  df-plusf 15744  df-mgm 15745  df-sgrp 15784  df-mnd 15794  df-mhm 15838  df-submnd 15839  df-grp 15928  df-minusg 15929  df-sbg 15930  df-mulg 15931  df-subg 16069  df-ghm 16136  df-cntz 16226  df-od 16424  df-cmn 16671  df-abl 16672  df-mgp 17012  df-ur 17024  df-ring 17070  df-cring 17071  df-oppr 17142  df-dvdsr 17160  df-unit 17161  df-invr 17191  df-dvr 17202  df-rnghom 17234  df-drng 17267  df-subrg 17296  df-abv 17335  df-lmod 17383  df-scaf 17384  df-sra 17687  df-rgmod 17688  df-nzr 17774  df-psmet 18279  df-xmet 18280  df-met 18281  df-bl 18282  df-mopn 18283  df-cnfld 18289  df-zring 18357  df-zrh 18408  df-zlm 18409  df-chr 18410  df-top 19266  df-bases 19268  df-topon 19269  df-topsp 19270  df-cn 19594  df-cnp 19595  df-tx 19929  df-hmeo 20122  df-tmd 20437  df-tgp 20438  df-trg 20528  df-xms 20689  df-ms 20690  df-tms 20691  df-nm 20969  df-ngp 20970  df-nrg 20972  df-nlm 20973  df-qqh 27786
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator