MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnumdenbi Structured version   Unicode version

Theorem qnumdenbi 14289
Description: Two numbers are the canonical representation of a rational iff they are coprime and have the right quotient. (Contributed by Stefan O'Rear, 13-Sep-2014.)
Assertion
Ref Expression
qnumdenbi  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )

Proof of Theorem qnumdenbi
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 qredeu 14260 . . . . . . 7  |-  ( A  e.  QQ  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
2 riotacl 6272 . . . . . . 7  |-  ( E! a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  ->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN ) )
3 1st2nd2 6836 . . . . . . 7  |-  ( (
iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  e.  ( ZZ 
X.  NN )  -> 
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
41, 2, 33syl 20 . . . . . 6  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
5 qnumval 14282 . . . . . . 7  |-  ( A  e.  QQ  ->  (numer `  A )  =  ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
6 qdenval 14283 . . . . . . 7  |-  ( A  e.  QQ  ->  (denom `  A )  =  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) )
75, 6opeq12d 4227 . . . . . 6  |-  ( A  e.  QQ  ->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. ( 1st `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) ,  ( 2nd `  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) ) ) >. )
84, 7eqtr4d 2501 . . . . 5  |-  ( A  e.  QQ  ->  ( iota_ a  e.  ( ZZ 
X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. (numer `  A ) ,  (denom `  A ) >. )
98eqeq1d 2459 . . . 4  |-  ( A  e.  QQ  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
1093ad2ant1 1017 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a )  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >.  <->  <. (numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >. )
)
11 fvex 5882 . . . 4  |-  (numer `  A )  e.  _V
12 fvex 5882 . . . 4  |-  (denom `  A )  e.  _V
1311, 12opth 4730 . . 3  |-  ( <.
(numer `  A ) ,  (denom `  A ) >.  =  <. B ,  C >.  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) )
1410, 13syl6rbb 262 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( (numer `  A
)  =  B  /\  (denom `  A )  =  C )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
15 opelxpi 5040 . . . 4  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  -> 
<. B ,  C >.  e.  ( ZZ  X.  NN ) )
16153adant1 1014 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  <. B ,  C >.  e.  ( ZZ 
X.  NN ) )
1713ad2ant1 1017 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )
18 fveq2 5872 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 1st `  a
)  =  ( 1st `  <. B ,  C >. ) )
19 fveq2 5872 . . . . . . 7  |-  ( a  =  <. B ,  C >.  ->  ( 2nd `  a
)  =  ( 2nd `  <. B ,  C >. ) )
2018, 19oveq12d 6314 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  gcd  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) ) )
2120eqeq1d 2459 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  <-> 
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1 ) )
2218, 19oveq12d 6314 . . . . . 6  |-  ( a  =  <. B ,  C >.  ->  ( ( 1st `  a )  /  ( 2nd `  a ) )  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )
2322eqeq2d 2471 . . . . 5  |-  ( a  =  <. B ,  C >.  ->  ( A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) )  <->  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) )
2421, 23anbi12d 710 . . . 4  |-  ( a  =  <. B ,  C >.  ->  ( ( ( ( 1st `  a
)  gcd  ( 2nd `  a ) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) )  <-> 
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) ) ) )
2524riota2 6280 . . 3  |-  ( (
<. B ,  C >.  e.  ( ZZ  X.  NN )  /\  E! a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  ->  ( (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) ) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
2616, 17, 25syl2anc 661 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( iota_ a  e.  ( ZZ  X.  NN ) ( ( ( 1st `  a )  gcd  ( 2nd `  a
) )  =  1  /\  A  =  ( ( 1st `  a
)  /  ( 2nd `  a ) ) ) )  =  <. B ,  C >. ) )
27 op1stg 6811 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
28 op2ndg 6812 . . . . . 6  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
2927, 28oveq12d 6314 . . . . 5  |-  ( ( B  e.  ZZ  /\  C  e.  NN )  ->  ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
30293adant1 1014 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  ( B  gcd  C ) )
3130eqeq1d 2459 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. )
)  =  1  <->  ( B  gcd  C )  =  1 ) )
32273adant1 1014 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 1st `  <. B ,  C >. )  =  B )
33283adant1 1014 . . . . 5  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( 2nd `  <. B ,  C >. )  =  C )
3432, 33oveq12d 6314 . . . 4  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
)  =  ( B  /  C ) )
3534eqeq2d 2471 . . 3  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. ) )  <->  A  =  ( B  /  C
) ) )
3631, 35anbi12d 710 . 2  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( ( 1st `  <. B ,  C >. )  gcd  ( 2nd `  <. B ,  C >. ) )  =  1  /\  A  =  ( ( 1st `  <. B ,  C >. )  /  ( 2nd `  <. B ,  C >. )
) )  <->  ( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C
) ) ) )
3714, 26, 363bitr2rd 282 1  |-  ( ( A  e.  QQ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( ( B  gcd  C )  =  1  /\  A  =  ( B  /  C ) )  <-> 
( (numer `  A
)  =  B  /\  (denom `  A )  =  C ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   E!wreu 2809   <.cop 4038    X. cxp 5006   ` cfv 5594   iota_crio 6257  (class class class)co 6296   1stc1st 6797   2ndc2nd 6798   1c1 9510    / cdiv 10227   NNcn 10556   ZZcz 10885   QQcq 11207    gcd cgcd 14156  numercnumer 14278  denomcdenom 14279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-2 10615  df-3 10616  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208  df-rp 11246  df-fl 11932  df-mod 12000  df-seq 12111  df-exp 12170  df-cj 12944  df-re 12945  df-im 12946  df-sqrt 13080  df-abs 13081  df-dvds 13999  df-gcd 14157  df-numer 14280  df-denom 14281
This theorem is referenced by:  qnumdencoprm  14290  qeqnumdivden  14291  divnumden  14293  numdensq  14299  numdenneg  27768  qqh0  28126  qqh1  28127
  Copyright terms: Public domain W3C validator