MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qnegcl Structured version   Unicode version

Theorem qnegcl 11074
Description: Closure law for the negative of a rational. (Contributed by NM, 2-Aug-2004.) (Revised by Mario Carneiro, 15-Sep-2014.)
Assertion
Ref Expression
qnegcl  |-  ( A  e.  QQ  ->  -u A  e.  QQ )

Proof of Theorem qnegcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 11059 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 zcn 10755 . . . . . . 7  |-  ( x  e.  ZZ  ->  x  e.  CC )
32adantr 465 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  x  e.  CC )
4 nncn 10434 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  CC )
54adantl 466 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  e.  CC )
6 nnne0 10458 . . . . . . 7  |-  ( y  e.  NN  ->  y  =/=  0 )
76adantl 466 . . . . . 6  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  y  =/=  0 )
83, 5, 7divnegd 10224 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> 
-u ( x  / 
y )  =  (
-u x  /  y
) )
9 znegcl 10784 . . . . . 6  |-  ( x  e.  ZZ  ->  -u x  e.  ZZ )
10 znq 11061 . . . . . 6  |-  ( (
-u x  e.  ZZ  /\  y  e.  NN )  ->  ( -u x  /  y )  e.  QQ )
119, 10sylan 471 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( -u x  / 
y )  e.  QQ )
128, 11eqeltrd 2539 . . . 4  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  -> 
-u ( x  / 
y )  e.  QQ )
13 negeq 9706 . . . . 5  |-  ( A  =  ( x  / 
y )  ->  -u A  =  -u ( x  / 
y ) )
1413eleq1d 2520 . . . 4  |-  ( A  =  ( x  / 
y )  ->  ( -u A  e.  QQ  <->  -u ( x  /  y )  e.  QQ ) )
1512, 14syl5ibrcom 222 . . 3  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  -u A  e.  QQ ) )
1615rexlimivv 2945 . 2  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  -u A  e.  QQ )
171, 16sylbi 195 1  |-  ( A  e.  QQ  ->  -u A  e.  QQ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758    =/= wne 2644   E.wrex 2796  (class class class)co 6193   CCcc 9384   0cc0 9386   -ucneg 9700    / cdiv 10097   NNcn 10426   ZZcz 10750   QQcq 11057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-sep 4514  ax-nul 4522  ax-pow 4571  ax-pr 4632  ax-un 6475  ax-resscn 9443  ax-1cn 9444  ax-icn 9445  ax-addcl 9446  ax-addrcl 9447  ax-mulcl 9448  ax-mulrcl 9449  ax-mulcom 9450  ax-addass 9451  ax-mulass 9452  ax-distr 9453  ax-i2m1 9454  ax-1ne0 9455  ax-1rid 9456  ax-rnegex 9457  ax-rrecex 9458  ax-cnre 9459  ax-pre-lttri 9460  ax-pre-lttrn 9461  ax-pre-ltadd 9462  ax-pre-mulgt0 9463
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rmo 2803  df-rab 2804  df-v 3073  df-sbc 3288  df-csb 3390  df-dif 3432  df-un 3434  df-in 3436  df-ss 3443  df-pss 3445  df-nul 3739  df-if 3893  df-pw 3963  df-sn 3979  df-pr 3981  df-tp 3983  df-op 3985  df-uni 4193  df-iun 4274  df-br 4394  df-opab 4452  df-mpt 4453  df-tr 4487  df-eprel 4733  df-id 4737  df-po 4742  df-so 4743  df-fr 4780  df-we 4782  df-ord 4823  df-on 4824  df-lim 4825  df-suc 4826  df-xp 4947  df-rel 4948  df-cnv 4949  df-co 4950  df-dm 4951  df-rn 4952  df-res 4953  df-ima 4954  df-iota 5482  df-fun 5521  df-fn 5522  df-f 5523  df-f1 5524  df-fo 5525  df-f1o 5526  df-fv 5527  df-riota 6154  df-ov 6196  df-oprab 6197  df-mpt2 6198  df-om 6580  df-1st 6680  df-2nd 6681  df-recs 6935  df-rdg 6969  df-er 7204  df-en 7414  df-dom 7415  df-sdom 7416  df-pnf 9524  df-mnf 9525  df-xr 9526  df-ltxr 9527  df-le 9528  df-sub 9701  df-neg 9702  df-div 10098  df-nn 10427  df-z 10751  df-q 11058
This theorem is referenced by:  qsubcl  11076  pcadd2  14063  qsubdrg  17983  vitalilem1  21214  qaa  21915  numdenneg  26224  rmxyneg  29402  mpaaeu  29648
  Copyright terms: Public domain W3C validator