MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qmulz Structured version   Unicode version

Theorem qmulz 11210
Description: If  A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.)
Assertion
Ref Expression
qmulz  |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
Distinct variable group:    x, A

Proof of Theorem qmulz
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 elq 11209 . 2  |-  ( A  e.  QQ  <->  E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x ) )
2 rexcom 3019 . . 3  |-  ( E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x )  <->  E. x  e.  NN  E. y  e.  ZZ  A  =  ( y  /  x ) )
3 zcn 10890 . . . . . . . . 9  |-  ( y  e.  ZZ  ->  y  e.  CC )
43adantl 466 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  y  e.  CC )
5 nncn 10564 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  CC )
65adantr 465 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  x  e.  CC )
7 nnne0 10589 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  =/=  0 )
87adantr 465 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  x  =/=  0 )
94, 6, 8divcan1d 10342 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( ( y  /  x )  x.  x
)  =  y )
10 simpr 461 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  y  e.  ZZ )
119, 10eqeltrd 2545 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( ( y  /  x )  x.  x
)  e.  ZZ )
12 oveq1 6303 . . . . . . 7  |-  ( A  =  ( y  /  x )  ->  ( A  x.  x )  =  ( ( y  /  x )  x.  x ) )
1312eleq1d 2526 . . . . . 6  |-  ( A  =  ( y  /  x )  ->  (
( A  x.  x
)  e.  ZZ  <->  ( (
y  /  x )  x.  x )  e.  ZZ ) )
1411, 13syl5ibrcom 222 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  ZZ )  ->  ( A  =  ( y  /  x )  ->  ( A  x.  x )  e.  ZZ ) )
1514rexlimdva 2949 . . . 4  |-  ( x  e.  NN  ->  ( E. y  e.  ZZ  A  =  ( y  /  x )  ->  ( A  x.  x )  e.  ZZ ) )
1615reximia 2923 . . 3  |-  ( E. x  e.  NN  E. y  e.  ZZ  A  =  ( y  /  x )  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
172, 16sylbi 195 . 2  |-  ( E. y  e.  ZZ  E. x  e.  NN  A  =  ( y  /  x )  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
181, 17sylbi 195 1  |-  ( A  e.  QQ  ->  E. x  e.  NN  ( A  x.  x )  e.  ZZ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1395    e. wcel 1819    =/= wne 2652   E.wrex 2808  (class class class)co 6296   CCcc 9507   0cc0 9509    x. cmul 9514    / cdiv 10227   NNcn 10556   ZZcz 10885   QQcq 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-z 10886  df-q 11208
This theorem is referenced by:  elqaalem1  22841  elqaalem3  22843
  Copyright terms: Public domain W3C validator