MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qmulcl Structured version   Unicode version

Theorem qmulcl 10983
Description: Closure of multiplication of rationals. (Contributed by NM, 1-Aug-2004.)
Assertion
Ref Expression
qmulcl  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )

Proof of Theorem qmulcl
Dummy variables  x  y  z  w  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elq 10967 . 2  |-  ( A  e.  QQ  <->  E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  /  y ) )
2 elq 10967 . 2  |-  ( B  e.  QQ  <->  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )
3 zmulcl 10705 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  x.  z
)  e.  ZZ )
4 nnmulcl 10357 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( y  x.  w
)  e.  NN )
53, 4anim12i 566 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  z  e.  ZZ )  /\  ( y  e.  NN  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
65an4s 822 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN ) )
76adantr 465 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w )  e.  NN ) )
8 oveq12 6112 . . . . . . . . 9  |-  ( ( A  =  ( x  /  y )  /\  B  =  ( z  /  w ) )  -> 
( A  x.  B
)  =  ( ( x  /  y )  x.  ( z  /  w ) ) )
9 zcn 10663 . . . . . . . . . . . 12  |-  ( x  e.  ZZ  ->  x  e.  CC )
10 zcn 10663 . . . . . . . . . . . 12  |-  ( z  e.  ZZ  ->  z  e.  CC )
119, 10anim12i 566 . . . . . . . . . . 11  |-  ( ( x  e.  ZZ  /\  z  e.  ZZ )  ->  ( x  e.  CC  /\  z  e.  CC ) )
1211ad2ant2r 746 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( x  e.  CC  /\  z  e.  CC ) )
13 nncn 10342 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  e.  CC )
14 nnne0 10366 . . . . . . . . . . . . 13  |-  ( y  e.  NN  ->  y  =/=  0 )
1513, 14jca 532 . . . . . . . . . . . 12  |-  ( y  e.  NN  ->  (
y  e.  CC  /\  y  =/=  0 ) )
16 nncn 10342 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  e.  CC )
17 nnne0 10366 . . . . . . . . . . . . 13  |-  ( w  e.  NN  ->  w  =/=  0 )
1816, 17jca 532 . . . . . . . . . . . 12  |-  ( w  e.  NN  ->  (
w  e.  CC  /\  w  =/=  0 ) )
1915, 18anim12i 566 . . . . . . . . . . 11  |-  ( ( y  e.  NN  /\  w  e.  NN )  ->  ( ( y  e.  CC  /\  y  =/=  0 )  /\  (
w  e.  CC  /\  w  =/=  0 ) ) )
2019ad2ant2l 745 . . . . . . . . . 10  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( y  e.  CC  /\  y  =/=  0 )  /\  (
w  e.  CC  /\  w  =/=  0 ) ) )
21 divmuldiv 10043 . . . . . . . . . 10  |-  ( ( ( x  e.  CC  /\  z  e.  CC )  /\  ( ( y  e.  CC  /\  y  =/=  0 )  /\  (
w  e.  CC  /\  w  =/=  0 ) ) )  ->  ( (
x  /  y )  x.  ( z  /  w ) )  =  ( ( x  x.  z )  /  (
y  x.  w ) ) )
2212, 20, 21syl2anc 661 . . . . . . . . 9  |-  ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  ( z  e.  ZZ  /\  w  e.  NN ) )  -> 
( ( x  / 
y )  x.  (
z  /  w ) )  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )
238, 22sylan9eqr 2497 . . . . . . . 8  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )
24 rspceov 6140 . . . . . . . . . 10  |-  ( ( ( x  x.  z
)  e.  ZZ  /\  ( y  x.  w
)  e.  NN  /\  ( A  x.  B
)  =  ( ( x  x.  z )  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
25243expa 1187 . . . . . . . . 9  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
26 elq 10967 . . . . . . . . 9  |-  ( ( A  x.  B )  e.  QQ  <->  E. v  e.  ZZ  E. u  e.  NN  ( A  x.  B )  =  ( v  /  u ) )
2725, 26sylibr 212 . . . . . . . 8  |-  ( ( ( ( x  x.  z )  e.  ZZ  /\  ( y  x.  w
)  e.  NN )  /\  ( A  x.  B )  =  ( ( x  x.  z
)  /  ( y  x.  w ) ) )  ->  ( A  x.  B )  e.  QQ )
287, 23, 27syl2anc 661 . . . . . . 7  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  (
z  e.  ZZ  /\  w  e.  NN )
)  /\  ( A  =  ( x  / 
y )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
2928an4s 822 . . . . . 6  |-  ( ( ( ( x  e.  ZZ  /\  y  e.  NN )  /\  A  =  ( x  / 
y ) )  /\  ( ( z  e.  ZZ  /\  w  e.  NN )  /\  B  =  ( z  /  w ) ) )  ->  ( A  x.  B )  e.  QQ )
3029exp43 612 . . . . 5  |-  ( ( x  e.  ZZ  /\  y  e.  NN )  ->  ( A  =  ( x  /  y )  ->  ( ( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) ) ) )
3130rexlimivv 2858 . . . 4  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  (
( z  e.  ZZ  /\  w  e.  NN )  ->  ( B  =  ( z  /  w
)  ->  ( A  x.  B )  e.  QQ ) ) )
3231rexlimdvv 2859 . . 3  |-  ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  ->  ( E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w )  ->  ( A  x.  B )  e.  QQ ) )
3332imp 429 . 2  |-  ( ( E. x  e.  ZZ  E. y  e.  NN  A  =  ( x  / 
y )  /\  E. z  e.  ZZ  E. w  e.  NN  B  =  ( z  /  w ) )  ->  ( A  x.  B )  e.  QQ )
341, 2, 33syl2anb 479 1  |-  ( ( A  e.  QQ  /\  B  e.  QQ )  ->  ( A  x.  B
)  e.  QQ )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1369    e. wcel 1756    =/= wne 2618   E.wrex 2728  (class class class)co 6103   CCcc 9292   0cc0 9294    x. cmul 9299    / cdiv 10005   NNcn 10334   ZZcz 10658   QQcq 10965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1591  ax-4 1602  ax-5 1670  ax-6 1708  ax-7 1728  ax-8 1758  ax-9 1760  ax-10 1775  ax-11 1780  ax-12 1792  ax-13 1943  ax-ext 2423  ax-sep 4425  ax-nul 4433  ax-pow 4482  ax-pr 4543  ax-un 6384  ax-resscn 9351  ax-1cn 9352  ax-icn 9353  ax-addcl 9354  ax-addrcl 9355  ax-mulcl 9356  ax-mulrcl 9357  ax-mulcom 9358  ax-addass 9359  ax-mulass 9360  ax-distr 9361  ax-i2m1 9362  ax-1ne0 9363  ax-1rid 9364  ax-rnegex 9365  ax-rrecex 9366  ax-cnre 9367  ax-pre-lttri 9368  ax-pre-lttrn 9369  ax-pre-ltadd 9370  ax-pre-mulgt0 9371
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1372  df-ex 1587  df-nf 1590  df-sb 1701  df-eu 2257  df-mo 2258  df-clab 2430  df-cleq 2436  df-clel 2439  df-nfc 2577  df-ne 2620  df-nel 2621  df-ral 2732  df-rex 2733  df-reu 2734  df-rmo 2735  df-rab 2736  df-v 2986  df-sbc 3199  df-csb 3301  df-dif 3343  df-un 3345  df-in 3347  df-ss 3354  df-pss 3356  df-nul 3650  df-if 3804  df-pw 3874  df-sn 3890  df-pr 3892  df-tp 3894  df-op 3896  df-uni 4104  df-iun 4185  df-br 4305  df-opab 4363  df-mpt 4364  df-tr 4398  df-eprel 4644  df-id 4648  df-po 4653  df-so 4654  df-fr 4691  df-we 4693  df-ord 4734  df-on 4735  df-lim 4736  df-suc 4737  df-xp 4858  df-rel 4859  df-cnv 4860  df-co 4861  df-dm 4862  df-rn 4863  df-res 4864  df-ima 4865  df-iota 5393  df-fun 5432  df-fn 5433  df-f 5434  df-f1 5435  df-fo 5436  df-f1o 5437  df-fv 5438  df-riota 6064  df-ov 6106  df-oprab 6107  df-mpt2 6108  df-om 6489  df-1st 6589  df-2nd 6590  df-recs 6844  df-rdg 6878  df-er 7113  df-en 7323  df-dom 7324  df-sdom 7325  df-pnf 9432  df-mnf 9433  df-xr 9434  df-ltxr 9435  df-le 9436  df-sub 9609  df-neg 9610  df-div 10006  df-nn 10335  df-n0 10592  df-z 10659  df-q 10966
This theorem is referenced by:  qdivcl  10986  qexpcl  11893  qexpclz  11898  qsqcl  11949  pcaddlem  13962  qsubdrg  17877  qaa  21801  padicabv  22891  ostth2lem2  22895  ostth3  22899  rmxyadd  29274  mpaaeu  29519
  Copyright terms: Public domain W3C validator