HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlaxr1i Structured version   Unicode version

Theorem qlaxr1i 25214
Description: One of the conditions showing  CH is an ortholattice. (This corresponds to axiom "ax-r1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
qlaxr1.1  |-  A  e. 
CH
qlaxr1.2  |-  B  e. 
CH
qlaxr1.3  |-  A  =  B
Assertion
Ref Expression
qlaxr1i  |-  B  =  A

Proof of Theorem qlaxr1i
StepHypRef Expression
1 qlaxr1.3 . 2  |-  A  =  B
21eqcomi 2467 1  |-  B  =  A
Colors of variables: wff setvar class
Syntax hints:    = wceq 1370    e. wcel 1758   CHcch 24510
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-cleq 2446
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator