HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  qlax1i Structured version   Unicode version

Theorem qlax1i 26743
Description: One of the equations showing  CH is an ortholattice. (This corresponds to axiom "ax-1" in the Quantum Logic Explorer.) (Contributed by NM, 4-Aug-2004.) (New usage is discouraged.)
Hypothesis
Ref Expression
qlax1.1  |-  A  e. 
CH
Assertion
Ref Expression
qlax1i  |-  A  =  ( _|_ `  ( _|_ `  A ) )

Proof of Theorem qlax1i
StepHypRef Expression
1 qlax1.1 . . 3  |-  A  e. 
CH
21ococi 26521 . 2  |-  ( _|_ `  ( _|_ `  A
) )  =  A
32eqcomi 2467 1  |-  A  =  ( _|_ `  ( _|_ `  A ) )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1398    e. wcel 1823   ` cfv 5570   CHcch 26044   _|_cort 26045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1623  ax-4 1636  ax-5 1709  ax-6 1752  ax-7 1795  ax-8 1825  ax-9 1827  ax-10 1842  ax-11 1847  ax-12 1859  ax-13 2004  ax-ext 2432  ax-rep 4550  ax-sep 4560  ax-nul 4568  ax-pow 4615  ax-pr 4676  ax-un 6565  ax-inf2 8049  ax-cc 8806  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559  ax-addf 9560  ax-mulf 9561  ax-hilex 26114  ax-hfvadd 26115  ax-hvcom 26116  ax-hvass 26117  ax-hv0cl 26118  ax-hvaddid 26119  ax-hfvmul 26120  ax-hvmulid 26121  ax-hvmulass 26122  ax-hvdistr1 26123  ax-hvdistr2 26124  ax-hvmul0 26125  ax-hfi 26194  ax-his1 26197  ax-his2 26198  ax-his3 26199  ax-his4 26200  ax-hcompl 26317
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 972  df-3an 973  df-tru 1401  df-ex 1618  df-nf 1622  df-sb 1745  df-eu 2288  df-mo 2289  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2651  df-nel 2652  df-ral 2809  df-rex 2810  df-reu 2811  df-rmo 2812  df-rab 2813  df-v 3108  df-sbc 3325  df-csb 3421  df-dif 3464  df-un 3466  df-in 3468  df-ss 3475  df-pss 3477  df-nul 3784  df-if 3930  df-pw 4001  df-sn 4017  df-pr 4019  df-tp 4021  df-op 4023  df-uni 4236  df-int 4272  df-iun 4317  df-iin 4318  df-br 4440  df-opab 4498  df-mpt 4499  df-tr 4533  df-eprel 4780  df-id 4784  df-po 4789  df-so 4790  df-fr 4827  df-se 4828  df-we 4829  df-ord 4870  df-on 4871  df-lim 4872  df-suc 4873  df-xp 4994  df-rel 4995  df-cnv 4996  df-co 4997  df-dm 4998  df-rn 4999  df-res 5000  df-ima 5001  df-iota 5534  df-fun 5572  df-fn 5573  df-f 5574  df-f1 5575  df-fo 5576  df-f1o 5577  df-fv 5578  df-isom 5579  df-riota 6232  df-ov 6273  df-oprab 6274  df-mpt2 6275  df-om 6674  df-1st 6773  df-2nd 6774  df-recs 7034  df-rdg 7068  df-1o 7122  df-oadd 7126  df-omul 7127  df-er 7303  df-map 7414  df-pm 7415  df-en 7510  df-dom 7511  df-sdom 7512  df-fin 7513  df-fi 7863  df-sup 7893  df-oi 7927  df-card 8311  df-acn 8314  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9798  df-neg 9799  df-div 10203  df-nn 10532  df-2 10590  df-3 10591  df-4 10592  df-n0 10792  df-z 10861  df-uz 11083  df-q 11184  df-rp 11222  df-xneg 11321  df-xadd 11322  df-xmul 11323  df-ico 11538  df-icc 11539  df-fz 11676  df-fl 11910  df-seq 12090  df-exp 12149  df-cj 13014  df-re 13015  df-im 13016  df-sqrt 13150  df-abs 13151  df-clim 13393  df-rlim 13394  df-rest 14912  df-topgen 14933  df-psmet 18606  df-xmet 18607  df-met 18608  df-bl 18609  df-mopn 18610  df-fbas 18611  df-fg 18612  df-top 19566  df-bases 19568  df-topon 19569  df-cld 19687  df-ntr 19688  df-cls 19689  df-nei 19766  df-lm 19897  df-haus 19983  df-fil 20513  df-fm 20605  df-flim 20606  df-flf 20607  df-cfil 21860  df-cau 21861  df-cmet 21862  df-grpo 25391  df-gid 25392  df-ginv 25393  df-gdiv 25394  df-ablo 25482  df-subgo 25502  df-vc 25637  df-nv 25683  df-va 25686  df-ba 25687  df-sm 25688  df-0v 25689  df-vs 25690  df-nmcv 25691  df-ims 25692  df-ssp 25833  df-ph 25926  df-cbn 25977  df-hnorm 26083  df-hba 26084  df-hvsub 26086  df-hlim 26087  df-hcau 26088  df-sh 26322  df-ch 26337  df-oc 26368  df-ch0 26369
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator