MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qfto Structured version   Unicode version

Theorem qfto 5328
Description: A quantifier-free way of expressing the total order predicate. (Contributed by Mario Carneiro, 22-Nov-2013.)
Assertion
Ref Expression
qfto  |-  ( ( A  X.  B ) 
C_  ( R  u.  `' R )  <->  A. x  e.  A  A. y  e.  B  ( x R y  \/  y R x ) )
Distinct variable groups:    x, y, A    x, B, y    x, R, y

Proof of Theorem qfto
StepHypRef Expression
1 opelxp 4970 . . . 4  |-  ( <.
x ,  y >.  e.  ( A  X.  B
)  <->  ( x  e.  A  /\  y  e.  B ) )
2 brun 4440 . . . . 5  |-  ( x ( R  u.  `' R ) y  <->  ( x R y  \/  x `' R y ) )
3 df-br 4393 . . . . 5  |-  ( x ( R  u.  `' R ) y  <->  <. x ,  y >.  e.  ( R  u.  `' R
) )
4 vex 3059 . . . . . . 7  |-  x  e. 
_V
5 vex 3059 . . . . . . 7  |-  y  e. 
_V
64, 5brcnv 5125 . . . . . 6  |-  ( x `' R y  <->  y R x )
76orbi2i 517 . . . . 5  |-  ( ( x R y  \/  x `' R y )  <->  ( x R y  \/  y R x ) )
82, 3, 73bitr3i 275 . . . 4  |-  ( <.
x ,  y >.  e.  ( R  u.  `' R )  <->  ( x R y  \/  y R x ) )
91, 8imbi12i 324 . . 3  |-  ( (
<. x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( R  u.  `' R
) )  <->  ( (
x  e.  A  /\  y  e.  B )  ->  ( x R y  \/  y R x ) ) )
1092albii 1660 . 2  |-  ( A. x A. y ( <.
x ,  y >.  e.  ( A  X.  B
)  ->  <. x ,  y >.  e.  ( R  u.  `' R
) )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B )  ->  (
x R y  \/  y R x ) ) )
11 relxp 5050 . . 3  |-  Rel  ( A  X.  B )
12 ssrel 5031 . . 3  |-  ( Rel  ( A  X.  B
)  ->  ( ( A  X.  B )  C_  ( R  u.  `' R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( R  u.  `' R ) ) ) )
1311, 12ax-mp 5 . 2  |-  ( ( A  X.  B ) 
C_  ( R  u.  `' R )  <->  A. x A. y ( <. x ,  y >.  e.  ( A  X.  B )  ->  <. x ,  y
>.  e.  ( R  u.  `' R ) ) )
14 r2al 2779 . 2  |-  ( A. x  e.  A  A. y  e.  B  (
x R y  \/  y R x )  <->  A. x A. y ( ( x  e.  A  /\  y  e.  B
)  ->  ( x R y  \/  y R x ) ) )
1510, 13, 143bitr4i 277 1  |-  ( ( A  X.  B ) 
C_  ( R  u.  `' R )  <->  A. x  e.  A  A. y  e.  B  ( x R y  \/  y R x ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 366    /\ wa 367   A.wal 1401    e. wcel 1840   A.wral 2751    u. cun 3409    C_ wss 3411   <.cop 3975   class class class wbr 4392    X. cxp 4938   `'ccnv 4939   Rel wrel 4945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1637  ax-4 1650  ax-5 1723  ax-6 1769  ax-7 1812  ax-9 1844  ax-10 1859  ax-11 1864  ax-12 1876  ax-13 2024  ax-ext 2378  ax-sep 4514  ax-nul 4522  ax-pr 4627
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 974  df-tru 1406  df-ex 1632  df-nf 1636  df-sb 1762  df-eu 2240  df-mo 2241  df-clab 2386  df-cleq 2392  df-clel 2395  df-nfc 2550  df-ne 2598  df-ral 2756  df-rex 2757  df-rab 2760  df-v 3058  df-dif 3414  df-un 3416  df-in 3418  df-ss 3425  df-nul 3736  df-if 3883  df-sn 3970  df-pr 3972  df-op 3976  df-br 4393  df-opab 4451  df-xp 4946  df-rel 4947  df-cnv 4948
This theorem is referenced by:  istsr2  16062  letsr  16071
  Copyright terms: Public domain W3C validator