MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdassr Structured version   Unicode version

Theorem qdassr 4097
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdassr  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )

Proof of Theorem qdassr
StepHypRef Expression
1 unass 3623 . 2  |-  ( ( { A }  u.  { B } )  u. 
{ C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
2 df-pr 3999 . . 3  |-  { A ,  B }  =  ( { A }  u.  { B } )
32uneq1i 3616 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( ( { A }  u.  { B } )  u.  { C ,  D } )
4 tpass 4095 . . 3  |-  { B ,  C ,  D }  =  ( { B }  u.  { C ,  D } )
54uneq2i 3617 . 2  |-  ( { A }  u.  { B ,  C ,  D } )  =  ( { A }  u.  ( { B }  u.  { C ,  D }
) )
61, 3, 53eqtr4i 2461 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A }  u.  { B ,  C ,  D } )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1437    u. cun 3434   {csn 3996   {cpr 3998   {ctp 4000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-v 3083  df-un 3441  df-sn 3997  df-pr 3999  df-tp 4001
This theorem is referenced by:  en4  7812  ex-pw  25865
  Copyright terms: Public domain W3C validator