MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qdass Structured version   Unicode version

Theorem qdass 4114
Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016.)
Assertion
Ref Expression
qdass  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )

Proof of Theorem qdass
StepHypRef Expression
1 unass 3646 . 2  |-  ( ( { A ,  B }  u.  { C } )  u.  { D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
2 df-tp 4019 . . 3  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
32uneq1i 3639 . 2  |-  ( { A ,  B ,  C }  u.  { D } )  =  ( ( { A ,  B }  u.  { C } )  u.  { D } )
4 df-pr 4017 . . 3  |-  { C ,  D }  =  ( { C }  u.  { D } )
54uneq2i 3640 . 2  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B }  u.  ( { C }  u.  { D } ) )
61, 3, 53eqtr4ri 2483 1  |-  ( { A ,  B }  u.  { C ,  D } )  =  ( { A ,  B ,  C }  u.  { D } )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1383    u. cun 3459   {csn 4014   {cpr 4016   {ctp 4018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1605  ax-4 1618  ax-5 1691  ax-6 1734  ax-7 1776  ax-10 1823  ax-11 1828  ax-12 1840  ax-13 1985  ax-ext 2421
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1386  df-ex 1600  df-nf 1604  df-sb 1727  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2593  df-v 3097  df-un 3466  df-pr 4017  df-tp 4019
This theorem is referenced by:  ex-pw  25128
  Copyright terms: Public domain W3C validator