MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Unicode version

Theorem qbtwnre 11423
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 10066 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 9902 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 nnrecl 10814 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) )
42, 3sylan 471 . . . . . 6  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  0  <  ( B  -  A )
)  ->  E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )
)
54ex 434 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
65ancoms 453 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
71, 6sylbid 215 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
8 nnre 10563 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
98adantl 466 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  y  e.  RR )
10 simplr 755 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  B  e.  RR )
119, 10remulcld 9641 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( y  x.  B )  e.  RR )
12 peano2rem 9905 . . . . . . 7  |-  ( ( y  x.  B )  e.  RR  ->  (
( y  x.  B
)  -  1 )  e.  RR )
1311, 12syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( y  x.  B )  - 
1 )  e.  RR )
14 zbtwnre 11205 . . . . . 6  |-  ( ( ( y  x.  B
)  -  1 )  e.  RR  ->  E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
15 reurex 3074 . . . . . 6  |-  ( E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
1613, 14, 153syl 20 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
17 znq 11211 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  NN )  ->  ( z  /  y
)  e.  QQ )
1817ancoms 453 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( z  /  y
)  e.  QQ )
1918adantl 466 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  /  y
)  e.  QQ )
20 an32 798 . . . . . . . . . 10  |-  ( ( ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) )  /\  ( 1  / 
y )  <  ( B  -  A )
)  <->  ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
218ad2antrl 727 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  RR )
22 simpll 753 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  RR )
2321, 22remulcld 9641 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  A
)  e.  RR )
2413adantrr 716 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  B )  -  1 )  e.  RR )
25 zre 10889 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
2625ad2antll 728 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
z  e.  RR )
27 ltletr 9693 . . . . . . . . . . . . 13  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( ( y  x.  B )  -  1 )  e.  RR  /\  z  e.  RR )  ->  ( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2823, 24, 26, 27syl3anc 1228 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2921recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  CC )
30 simplr 755 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  RR )
3130recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  CC )
3222recnd 9639 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  CC )
3329, 31, 32subdid 10033 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  ( B  -  A )
)  =  ( ( y  x.  B )  -  ( y  x.  A ) ) )
3433breq2d 4468 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( 1  <  (
y  x.  ( B  -  A ) )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
35 1red 9628 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
1  e.  RR )
3630, 22resubcld 10008 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( B  -  A
)  e.  RR )
37 nngt0 10585 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  0  <  y )
3837ad2antrl 727 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
0  <  y )
39 ltdivmul 10438 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( B  -  A
)  e.  RR  /\  ( y  e.  RR  /\  0  <  y ) )  ->  ( (
1  /  y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A ) ) ) )
4035, 36, 21, 38, 39syl112anc 1232 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A
) ) ) )
4111adantrr 716 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  RR )
42 ltsub13 10054 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( y  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4323, 41, 35, 42syl3anc 1228 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4434, 40, 433bitr4rd 286 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <-> 
( 1  /  y
)  <  ( B  -  A ) ) )
4544anbi1d 704 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
1  /  y )  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z ) ) )
46 ancom 450 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  y
)  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) )
4745, 46syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) ) )
48 ltmuldiv2 10437 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  z  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( y  x.  A )  < 
z  <->  A  <  ( z  /  y ) ) )
4922, 26, 21, 38, 48syl112anc 1232 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  z  <->  A  <  ( z  / 
y ) ) )
5028, 47, 493imtr3d 267 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  ( 1  /  y )  < 
( B  -  A
) )  ->  A  <  ( z  /  y
) ) )
5141recnd 9639 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  CC )
52 ax-1cn 9567 . . . . . . . . . . . . . . 15  |-  1  e.  CC
53 npcan 9848 . . . . . . . . . . . . . . 15  |-  ( ( ( y  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5451, 52, 53sylancl 662 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5554breq2d 4468 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
z  <  ( y  x.  B ) ) )
56 ltdivmul 10438 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  B  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( z  /  y )  < 
B  <->  z  <  (
y  x.  B ) ) )
5726, 30, 21, 38, 56syl112anc 1232 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( z  / 
y )  <  B  <->  z  <  ( y  x.  B ) ) )
5855, 57bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
( z  /  y
)  <  B )
)
5958biimpd 207 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  ->  ( z  / 
y )  <  B
) )
6050, 59anim12d 563 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6120, 60syl5bi 217 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
62 breq2 4460 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  ( A  <  x  <->  A  <  ( z  /  y ) ) )
63 breq1 4459 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  (
x  <  B  <->  ( z  /  y )  < 
B ) )
6462, 63anbi12d 710 . . . . . . . . . 10  |-  ( x  =  ( z  / 
y )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6564rspcev 3210 . . . . . . . . 9  |-  ( ( ( z  /  y
)  e.  QQ  /\  ( A  <  ( z  /  y )  /\  ( z  /  y
)  <  B )
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
6619, 61, 65syl6an 545 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
6766expd 436 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
6867expr 615 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( z  e.  ZZ  ->  ( (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) ) ) )
6968rexlimdv 2947 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
7016, 69mpd 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( 1  /  y )  < 
( B  -  A
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
7170rexlimdva 2949 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
727, 71syld 44 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
73723impia 1193 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 973    = wceq 1395    e. wcel 1819   E.wrex 2808   E!wreu 2809   class class class wbr 4456  (class class class)co 6296   CCcc 9507   RRcr 9508   0cc0 9509   1c1 9510    + caddc 9512    x. cmul 9514    < clt 9645    <_ cle 9646    - cmin 9824    / cdiv 10227   NNcn 10556   ZZcz 10885   QQcq 11207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1619  ax-4 1632  ax-5 1705  ax-6 1748  ax-7 1791  ax-8 1821  ax-9 1823  ax-10 1838  ax-11 1843  ax-12 1855  ax-13 2000  ax-ext 2435  ax-sep 4578  ax-nul 4586  ax-pow 4634  ax-pr 4695  ax-un 6591  ax-cnex 9565  ax-resscn 9566  ax-1cn 9567  ax-icn 9568  ax-addcl 9569  ax-addrcl 9570  ax-mulcl 9571  ax-mulrcl 9572  ax-mulcom 9573  ax-addass 9574  ax-mulass 9575  ax-distr 9576  ax-i2m1 9577  ax-1ne0 9578  ax-1rid 9579  ax-rnegex 9580  ax-rrecex 9581  ax-cnre 9582  ax-pre-lttri 9583  ax-pre-lttrn 9584  ax-pre-ltadd 9585  ax-pre-mulgt0 9586  ax-pre-sup 9587
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1614  df-nf 1618  df-sb 1741  df-eu 2287  df-mo 2288  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-nel 2655  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3111  df-sbc 3328  df-csb 3431  df-dif 3474  df-un 3476  df-in 3478  df-ss 3485  df-pss 3487  df-nul 3794  df-if 3945  df-pw 4017  df-sn 4033  df-pr 4035  df-tp 4037  df-op 4039  df-uni 4252  df-iun 4334  df-br 4457  df-opab 4516  df-mpt 4517  df-tr 4551  df-eprel 4800  df-id 4804  df-po 4809  df-so 4810  df-fr 4847  df-we 4849  df-ord 4890  df-on 4891  df-lim 4892  df-suc 4893  df-xp 5014  df-rel 5015  df-cnv 5016  df-co 5017  df-dm 5018  df-rn 5019  df-res 5020  df-ima 5021  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6258  df-ov 6299  df-oprab 6300  df-mpt2 6301  df-om 6700  df-1st 6799  df-2nd 6800  df-recs 7060  df-rdg 7094  df-er 7329  df-en 7536  df-dom 7537  df-sdom 7538  df-sup 7919  df-pnf 9647  df-mnf 9648  df-xr 9649  df-ltxr 9650  df-le 9651  df-sub 9826  df-neg 9827  df-div 10228  df-nn 10557  df-n0 10817  df-z 10886  df-uz 11107  df-q 11208
This theorem is referenced by:  qbtwnxr  11424  qsqueeze  11425  nmoleub2lem3  21723  mbfaddlem  22192  rpnnen3lem  31135
  Copyright terms: Public domain W3C validator