MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qbtwnre Structured version   Unicode version

Theorem qbtwnre 11165
Description: The rational numbers are dense in  RR: any two real numbers have a rational between them. Exercise 6 of [Apostol] p. 28. (Contributed by NM, 18-Nov-2004.) (Proof shortened by Mario Carneiro, 13-Jun-2014.)
Assertion
Ref Expression
qbtwnre  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Distinct variable groups:    x, A    x, B

Proof of Theorem qbtwnre
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 posdif 9828 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  <->  0  <  ( B  -  A ) ) )
2 resubcl 9669 . . . . . . 7  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( B  -  A
)  e.  RR )
3 nnrecl 10573 . . . . . . 7  |-  ( ( ( B  -  A
)  e.  RR  /\  0  <  ( B  -  A ) )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) )
42, 3sylan 468 . . . . . 6  |-  ( ( ( B  e.  RR  /\  A  e.  RR )  /\  0  <  ( B  -  A )
)  ->  E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )
)
54ex 434 . . . . 5  |-  ( ( B  e.  RR  /\  A  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
65ancoms 450 . . . 4  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( 0  <  ( B  -  A )  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
71, 6sylbid 215 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. y  e.  NN  ( 1  /  y
)  <  ( B  -  A ) ) )
8 nnre 10325 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  RR )
98adantl 463 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  y  e.  RR )
10 simplr 749 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  B  e.  RR )
119, 10remulcld 9410 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( y  x.  B )  e.  RR )
12 peano2rem 9671 . . . . . . 7  |-  ( ( y  x.  B )  e.  RR  ->  (
( y  x.  B
)  -  1 )  e.  RR )
1311, 12syl 16 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( y  x.  B )  - 
1 )  e.  RR )
14 zbtwnre 10947 . . . . . 6  |-  ( ( ( y  x.  B
)  -  1 )  e.  RR  ->  E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
15 reurex 2935 . . . . . 6  |-  ( E! z  e.  ZZ  (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
1613, 14, 153syl 20 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  E. z  e.  ZZ  ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) ) )
17 znq 10953 . . . . . . . . . . 11  |-  ( ( z  e.  ZZ  /\  y  e.  NN )  ->  ( z  /  y
)  e.  QQ )
1817ancoms 450 . . . . . . . . . 10  |-  ( ( y  e.  NN  /\  z  e.  ZZ )  ->  ( z  /  y
)  e.  QQ )
1918adantl 463 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  /  y
)  e.  QQ )
20 an32 791 . . . . . . . . . 10  |-  ( ( ( ( ( y  x.  B )  - 
1 )  <_  z  /\  z  <  ( ( ( y  x.  B
)  -  1 )  +  1 ) )  /\  ( 1  / 
y )  <  ( B  -  A )
)  <->  ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) ) )
218ad2antrl 722 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  RR )
22 simpll 748 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  RR )
2321, 22remulcld 9410 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  A
)  e.  RR )
2413adantrr 711 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  B )  -  1 )  e.  RR )
25 zre 10646 . . . . . . . . . . . . . 14  |-  ( z  e.  ZZ  ->  z  e.  RR )
2625ad2antll 723 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
z  e.  RR )
27 ltletr 9462 . . . . . . . . . . . . 13  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( ( y  x.  B )  -  1 )  e.  RR  /\  z  e.  RR )  ->  ( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2823, 24, 26, 27syl3anc 1213 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  ->  (
y  x.  A )  <  z ) )
2921recnd 9408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
y  e.  CC )
30 simplr 749 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  RR )
3130recnd 9408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  B  e.  CC )
3222recnd 9408 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  ->  A  e.  CC )
3329, 31, 32subdid 9796 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  ( B  -  A )
)  =  ( ( y  x.  B )  -  ( y  x.  A ) ) )
3433breq2d 4301 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( 1  <  (
y  x.  ( B  -  A ) )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
35 1red 9397 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
1  e.  RR )
3630, 22resubcld 9772 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( B  -  A
)  e.  RR )
37 nngt0 10347 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN  ->  0  <  y )
3837ad2antrl 722 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
0  <  y )
39 ltdivmul 10200 . . . . . . . . . . . . . . . 16  |-  ( ( 1  e.  RR  /\  ( B  -  A
)  e.  RR  /\  ( y  e.  RR  /\  0  <  y ) )  ->  ( (
1  /  y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A ) ) ) )
4035, 36, 21, 38, 39syl112anc 1217 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  <->  1  <  ( y  x.  ( B  -  A
) ) ) )
4111adantrr 711 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  RR )
42 ltsub13 9816 . . . . . . . . . . . . . . . 16  |-  ( ( ( y  x.  A
)  e.  RR  /\  ( y  x.  B
)  e.  RR  /\  1  e.  RR )  ->  ( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4323, 41, 35, 42syl3anc 1213 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <->  1  <  ( ( y  x.  B )  -  ( y  x.  A ) ) ) )
4434, 40, 433bitr4rd 286 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  (
( y  x.  B
)  -  1 )  <-> 
( 1  /  y
)  <  ( B  -  A ) ) )
4544anbi1d 699 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
1  /  y )  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z ) ) )
46 ancom 448 . . . . . . . . . . . . 13  |-  ( ( ( 1  /  y
)  <  ( B  -  A )  /\  (
( y  x.  B
)  -  1 )  <_  z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) )
4745, 46syl6bb 261 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  A )  < 
( ( y  x.  B )  -  1 )  /\  ( ( y  x.  B )  -  1 )  <_ 
z )  <->  ( (
( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) ) ) )
48 ltmuldiv2 10199 . . . . . . . . . . . . 13  |-  ( ( A  e.  RR  /\  z  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( y  x.  A )  < 
z  <->  A  <  ( z  /  y ) ) )
4922, 26, 21, 38, 48syl112anc 1217 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( y  x.  A )  <  z  <->  A  <  ( z  / 
y ) ) )
5028, 47, 493imtr3d 267 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  ( 1  /  y )  < 
( B  -  A
) )  ->  A  <  ( z  /  y
) ) )
5141recnd 9408 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( y  x.  B
)  e.  CC )
52 ax-1cn 9336 . . . . . . . . . . . . . . 15  |-  1  e.  CC
53 npcan 9615 . . . . . . . . . . . . . . 15  |-  ( ( ( y  x.  B
)  e.  CC  /\  1  e.  CC )  ->  ( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5451, 52, 53sylancl 657 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( y  x.  B )  - 
1 )  +  1 )  =  ( y  x.  B ) )
5554breq2d 4301 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
z  <  ( y  x.  B ) ) )
56 ltdivmul 10200 . . . . . . . . . . . . . 14  |-  ( ( z  e.  RR  /\  B  e.  RR  /\  (
y  e.  RR  /\  0  <  y ) )  ->  ( ( z  /  y )  < 
B  <->  z  <  (
y  x.  B ) ) )
5726, 30, 21, 38, 56syl112anc 1217 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( z  / 
y )  <  B  <->  z  <  ( y  x.  B ) ) )
5855, 57bitr4d 256 . . . . . . . . . . . 12  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  <-> 
( z  /  y
)  <  B )
)
5958biimpd 207 . . . . . . . . . . 11  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( z  <  (
( ( y  x.  B )  -  1 )  +  1 )  ->  ( z  / 
y )  <  B
) )
6050, 59anim12d 560 . . . . . . . . . 10  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  (
1  /  y )  <  ( B  -  A ) )  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6120, 60syl5bi 217 . . . . . . . . 9  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  -> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
62 breq2 4293 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  ( A  <  x  <->  A  <  ( z  /  y ) ) )
63 breq1 4292 . . . . . . . . . . 11  |-  ( x  =  ( z  / 
y )  ->  (
x  <  B  <->  ( z  /  y )  < 
B ) )
6462, 63anbi12d 705 . . . . . . . . . 10  |-  ( x  =  ( z  / 
y )  ->  (
( A  <  x  /\  x  <  B )  <-> 
( A  <  (
z  /  y )  /\  ( z  / 
y )  <  B
) ) )
6564rspcev 3070 . . . . . . . . 9  |-  ( ( ( z  /  y
)  e.  QQ  /\  ( A  <  ( z  /  y )  /\  ( z  /  y
)  <  B )
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
6619, 61, 65syl6an 542 . . . . . . . 8  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( ( y  x.  B
)  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  - 
1 )  +  1 ) )  /\  (
1  /  y )  <  ( B  -  A ) )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
6766exp3a 436 . . . . . . 7  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  ( y  e.  NN  /\  z  e.  ZZ ) )  -> 
( ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
6867expr 612 . . . . . 6  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( z  e.  ZZ  ->  ( (
( ( y  x.  B )  -  1 )  <_  z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  -> 
( ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) ) ) )
6968rexlimdv 2838 . . . . 5  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( E. z  e.  ZZ  ( ( ( y  x.  B )  -  1 )  <_ 
z  /\  z  <  ( ( ( y  x.  B )  -  1 )  +  1 ) )  ->  ( (
1  /  y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) ) )
7016, 69mpd 15 . . . 4  |-  ( ( ( A  e.  RR  /\  B  e.  RR )  /\  y  e.  NN )  ->  ( ( 1  /  y )  < 
( B  -  A
)  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) ) )
7170rexlimdva 2839 . . 3  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( E. y  e.  NN  ( 1  / 
y )  <  ( B  -  A )  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
727, 71syld 44 . 2  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  E. x  e.  QQ  ( A  <  x  /\  x  <  B ) ) )
73723impia 1179 1  |-  ( ( A  e.  RR  /\  B  e.  RR  /\  A  <  B )  ->  E. x  e.  QQ  ( A  < 
x  /\  x  <  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761   E.wrex 2714   E!wreu 2715   class class class wbr 4289  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   ZZcz 10642   QQcq 10949
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2263  df-mo 2264  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-n0 10576  df-z 10643  df-uz 10858  df-q 10950
This theorem is referenced by:  qbtwnxr  11166  qsqueeze  11167  nmoleub2lem3  20570  mbfaddlem  21038  rpnnen3lem  29289
  Copyright terms: Public domain W3C validator