MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Unicode version

Theorem qabvle 23676
Description: By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvle  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )

Proof of Theorem qabvle
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5872 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
2 id 22 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
31, 2breq12d 4466 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  <_  k  <->  ( F `  0 )  <_ 
0 ) )
43imbi2d 316 . . 3  |-  ( k  =  0  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  0
)  <_  0 ) ) )
5 fveq2 5872 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
6 id 22 . . . . 5  |-  ( k  =  n  ->  k  =  n )
75, 6breq12d 4466 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  <_  k  <->  ( F `  n )  <_  n
) )
87imbi2d 316 . . 3  |-  ( k  =  n  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  n
)  <_  n )
) )
9 fveq2 5872 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
10 id 22 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  k  =  ( n  + 
1 ) )
119, 10breq12d 4466 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  k  <->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) ) )
1211imbi2d 316 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
13 fveq2 5872 . . . . 5  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
14 id 22 . . . . 5  |-  ( k  =  N  ->  k  =  N )
1513, 14breq12d 4466 . . . 4  |-  ( k  =  N  ->  (
( F `  k
)  <_  k  <->  ( F `  N )  <_  N
) )
1615imbi2d 316 . . 3  |-  ( k  =  N  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  N
)  <_  N )
) )
17 qabsabv.a . . . . 5  |-  A  =  (AbsVal `  Q )
18 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
1918qrng0 23672 . . . . 5  |-  0  =  ( 0g `  Q )
2017, 19abv0 17351 . . . 4  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
21 0le0 10637 . . . 4  |-  0  <_  0
2220, 21syl6eqbr 4490 . . 3  |-  ( F  e.  A  ->  ( F `  0 )  <_  0 )
23 nn0p1nn 10847 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
2423ad2antrl 727 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  NN )
25 nnq 11207 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  QQ )
2624, 25syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  QQ )
2718qrngbas 23670 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
2817, 27abvcl 17344 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  +  1
)  e.  QQ )  ->  ( F `  ( n  +  1
) )  e.  RR )
2926, 28syldan 470 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
30 nn0z 10899 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3130ad2antrl 727 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  ZZ )
32 zq 11200 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  QQ )
3417, 27abvcl 17344 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
3533, 34syldan 470 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  e.  RR )
36 peano2re 9764 . . . . . . . 8  |-  ( ( F `  n )  e.  RR  ->  (
( F `  n
)  +  1 )  e.  RR )
3735, 36syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  e.  RR )
3831zred 10978 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  RR )
39 peano2re 9764 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
4038, 39syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  RR )
41 simpl 457 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  F  e.  A )
42 1z 10906 . . . . . . . . . 10  |-  1  e.  ZZ
43 zq 11200 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4442, 43mp1i 12 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  QQ )
45 qex 11206 . . . . . . . . . . 11  |-  QQ  e.  _V
46 cnfldadd 18295 . . . . . . . . . . . 12  |-  +  =  ( +g  ` fld )
4718, 46ressplusg 14614 . . . . . . . . . . 11  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
4845, 47ax-mp 5 . . . . . . . . . 10  |-  +  =  ( +g  `  Q )
4917, 27, 48abvtri 17350 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ  /\  1  e.  QQ )  ->  ( F `  ( n  +  1 ) )  <_  ( ( F `
 n )  +  ( F `  1
) ) )
5041, 33, 44, 49syl3anc 1228 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  ( F `
 1 ) ) )
51 ax-1ne0 9573 . . . . . . . . . . 11  |-  1  =/=  0
5218qrng1 23673 . . . . . . . . . . . 12  |-  1  =  ( 1r `  Q )
5317, 52, 19abv1z 17352 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
5451, 53mpan2 671 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
5554adantr 465 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  1 )  =  1 )
5655oveq2d 6311 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  ( F ` 
1 ) )  =  ( ( F `  n )  +  1 ) )
5750, 56breqtrd 4477 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  1 ) )
58 1red 9623 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  RR )
59 simprr 756 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  <_  n
)
6035, 38, 58, 59leadd1dd 10178 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  <_ 
( n  +  1 ) )
6129, 37, 40, 57, 60letrd 9750 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) )
6261expr 615 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN0 )  -> 
( ( F `  n )  <_  n  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) )
6362expcom 435 . . . 4  |-  ( n  e.  NN0  ->  ( F  e.  A  ->  (
( F `  n
)  <_  n  ->  ( F `  ( n  +  1 ) )  <_  ( n  + 
1 ) ) ) )
6463a2d 26 . . 3  |-  ( n  e.  NN0  ->  ( ( F  e.  A  -> 
( F `  n
)  <_  n )  ->  ( F  e.  A  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
654, 8, 12, 16, 22, 64nn0ind 10969 . 2  |-  ( N  e.  NN0  ->  ( F  e.  A  ->  ( F `  N )  <_  N ) )
6665impcom 430 1  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3118   class class class wbr 4453   ` cfv 5594  (class class class)co 6295   RRcr 9503   0cc0 9504   1c1 9505    + caddc 9507    <_ cle 9641   NNcn 10548   NN0cn0 10807   ZZcz 10876   QQcq 11194   ↾s cress 14508   +g cplusg 14572  AbsValcabv 17336  ℂfldccnfld 18290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4564  ax-sep 4574  ax-nul 4582  ax-pow 4631  ax-pr 4692  ax-un 6587  ax-cnex 9560  ax-resscn 9561  ax-1cn 9562  ax-icn 9563  ax-addcl 9564  ax-addrcl 9565  ax-mulcl 9566  ax-mulrcl 9567  ax-mulcom 9568  ax-addass 9569  ax-mulass 9570  ax-distr 9571  ax-i2m1 9572  ax-1ne0 9573  ax-1rid 9574  ax-rnegex 9575  ax-rrecex 9576  ax-cnre 9577  ax-pre-lttri 9578  ax-pre-lttrn 9579  ax-pre-ltadd 9580  ax-pre-mulgt0 9581  ax-addf 9583  ax-mulf 9584
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2822  df-rex 2823  df-reu 2824  df-rmo 2825  df-rab 2826  df-v 3120  df-sbc 3337  df-csb 3441  df-dif 3484  df-un 3486  df-in 3488  df-ss 3495  df-pss 3497  df-nul 3791  df-if 3946  df-pw 4018  df-sn 4034  df-pr 4036  df-tp 4038  df-op 4040  df-uni 4252  df-int 4289  df-iun 4333  df-br 4454  df-opab 4512  df-mpt 4513  df-tr 4547  df-eprel 4797  df-id 4801  df-po 4806  df-so 4807  df-fr 4844  df-we 4846  df-ord 4887  df-on 4888  df-lim 4889  df-suc 4890  df-xp 5011  df-rel 5012  df-cnv 5013  df-co 5014  df-dm 5015  df-rn 5016  df-res 5017  df-ima 5018  df-iota 5557  df-fun 5596  df-fn 5597  df-f 5598  df-f1 5599  df-fo 5600  df-f1o 5601  df-fv 5602  df-riota 6256  df-ov 6298  df-oprab 6299  df-mpt2 6300  df-om 6696  df-1st 6795  df-2nd 6796  df-tpos 6967  df-recs 7054  df-rdg 7088  df-1o 7142  df-oadd 7146  df-er 7323  df-map 7434  df-en 7529  df-dom 7530  df-sdom 7531  df-fin 7532  df-pnf 9642  df-mnf 9643  df-xr 9644  df-ltxr 9645  df-le 9646  df-sub 9819  df-neg 9820  df-div 10219  df-nn 10549  df-2 10606  df-3 10607  df-4 10608  df-5 10609  df-6 10610  df-7 10611  df-8 10612  df-9 10613  df-10 10614  df-n0 10808  df-z 10877  df-dec 10989  df-uz 11095  df-q 11195  df-ico 11547  df-fz 11685  df-struct 14509  df-ndx 14510  df-slot 14511  df-base 14512  df-sets 14513  df-ress 14514  df-plusg 14585  df-mulr 14586  df-starv 14587  df-tset 14591  df-ple 14592  df-ds 14594  df-unif 14595  df-0g 14714  df-mgm 15746  df-sgrp 15785  df-mnd 15795  df-grp 15929  df-minusg 15930  df-subg 16070  df-cmn 16673  df-mgp 17014  df-ur 17026  df-ring 17072  df-cring 17073  df-oppr 17144  df-dvdsr 17162  df-unit 17163  df-invr 17193  df-dvr 17204  df-drng 17269  df-subrg 17298  df-abv 17337  df-cnfld 18291
This theorem is referenced by:  ostth2lem2  23685  ostth2  23688
  Copyright terms: Public domain W3C validator