MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Unicode version

Theorem qabvle 22759
Description: By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvle  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )

Proof of Theorem qabvle
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5679 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
2 id 22 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
31, 2breq12d 4293 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  <_  k  <->  ( F `  0 )  <_ 
0 ) )
43imbi2d 316 . . 3  |-  ( k  =  0  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  0
)  <_  0 ) ) )
5 fveq2 5679 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
6 id 22 . . . . 5  |-  ( k  =  n  ->  k  =  n )
75, 6breq12d 4293 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  <_  k  <->  ( F `  n )  <_  n
) )
87imbi2d 316 . . 3  |-  ( k  =  n  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  n
)  <_  n )
) )
9 fveq2 5679 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
10 id 22 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  k  =  ( n  + 
1 ) )
119, 10breq12d 4293 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  k  <->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) ) )
1211imbi2d 316 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
13 fveq2 5679 . . . . 5  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
14 id 22 . . . . 5  |-  ( k  =  N  ->  k  =  N )
1513, 14breq12d 4293 . . . 4  |-  ( k  =  N  ->  (
( F `  k
)  <_  k  <->  ( F `  N )  <_  N
) )
1615imbi2d 316 . . 3  |-  ( k  =  N  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  N
)  <_  N )
) )
17 qabsabv.a . . . . 5  |-  A  =  (AbsVal `  Q )
18 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
1918qrng0 22755 . . . . 5  |-  0  =  ( 0g `  Q )
2017, 19abv0 16840 . . . 4  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
21 0le0 10399 . . . 4  |-  0  <_  0
2220, 21syl6eqbr 4317 . . 3  |-  ( F  e.  A  ->  ( F `  0 )  <_  0 )
23 nn0p1nn 10607 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
2423ad2antrl 720 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  NN )
25 nnq 10954 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  QQ )
2624, 25syl 16 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  QQ )
2718qrngbas 22753 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
2817, 27abvcl 16833 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  +  1
)  e.  QQ )  ->  ( F `  ( n  +  1
) )  e.  RR )
2926, 28syldan 467 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
30 nn0z 10657 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3130ad2antrl 720 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  ZZ )
32 zq 10947 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 16 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  QQ )
3417, 27abvcl 16833 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
3533, 34syldan 467 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  e.  RR )
36 peano2re 9530 . . . . . . . 8  |-  ( ( F `  n )  e.  RR  ->  (
( F `  n
)  +  1 )  e.  RR )
3735, 36syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  e.  RR )
3831zred 10735 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  RR )
39 peano2re 9530 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
4038, 39syl 16 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  RR )
41 simpl 454 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  F  e.  A )
42 1z 10664 . . . . . . . . . 10  |-  1  e.  ZZ
43 zq 10947 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4442, 43mp1i 12 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  QQ )
45 qex 10953 . . . . . . . . . . 11  |-  QQ  e.  _V
46 cnfldadd 17667 . . . . . . . . . . . 12  |-  +  =  ( +g  ` fld )
4718, 46ressplusg 14263 . . . . . . . . . . 11  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
4845, 47ax-mp 5 . . . . . . . . . 10  |-  +  =  ( +g  `  Q )
4917, 27, 48abvtri 16839 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ  /\  1  e.  QQ )  ->  ( F `  ( n  +  1 ) )  <_  ( ( F `
 n )  +  ( F `  1
) ) )
5041, 33, 44, 49syl3anc 1211 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  ( F `
 1 ) ) )
51 ax-1ne0 9339 . . . . . . . . . . 11  |-  1  =/=  0
5218qrng1 22756 . . . . . . . . . . . 12  |-  1  =  ( 1r `  Q )
5317, 52, 19abv1z 16841 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
5451, 53mpan2 664 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
5554adantr 462 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  1 )  =  1 )
5655oveq2d 6096 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  ( F ` 
1 ) )  =  ( ( F `  n )  +  1 ) )
5750, 56breqtrd 4304 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  1 ) )
58 1red 9389 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  RR )
59 simprr 749 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  <_  n
)
6035, 38, 58, 59leadd1dd 9941 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  <_ 
( n  +  1 ) )
6129, 37, 40, 57, 60letrd 9516 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) )
6261expr 610 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN0 )  -> 
( ( F `  n )  <_  n  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) )
6362expcom 435 . . . 4  |-  ( n  e.  NN0  ->  ( F  e.  A  ->  (
( F `  n
)  <_  n  ->  ( F `  ( n  +  1 ) )  <_  ( n  + 
1 ) ) ) )
6463a2d 26 . . 3  |-  ( n  e.  NN0  ->  ( ( F  e.  A  -> 
( F `  n
)  <_  n )  ->  ( F  e.  A  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
654, 8, 12, 16, 22, 64nn0ind 10726 . 2  |-  ( N  e.  NN0  ->  ( F  e.  A  ->  ( F `  N )  <_  N ) )
6665impcom 430 1  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755    =/= wne 2596   _Vcvv 2962   class class class wbr 4280   ` cfv 5406  (class class class)co 6080   RRcr 9269   0cc0 9270   1c1 9271    + caddc 9273    <_ cle 9407   NNcn 10310   NN0cn0 10567   ZZcz 10634   QQcq 10941   ↾s cress 14158   +g cplusg 14221  AbsValcabv 16825  ℂfldccnfld 17662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347  ax-addf 9349  ax-mulf 9350
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rmo 2713  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-1st 6566  df-2nd 6567  df-tpos 6734  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-div 9982  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-q 10942  df-ico 11294  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-sets 14163  df-ress 14164  df-plusg 14234  df-mulr 14235  df-starv 14236  df-tset 14240  df-ple 14241  df-ds 14243  df-unif 14244  df-0g 14363  df-mnd 15398  df-grp 15525  df-minusg 15526  df-subg 15658  df-cmn 16259  df-mgp 16566  df-rng 16580  df-cring 16581  df-ur 16582  df-oppr 16649  df-dvdsr 16667  df-unit 16668  df-invr 16698  df-dvr 16709  df-drng 16758  df-subrg 16787  df-abv 16826  df-cnfld 17663
This theorem is referenced by:  ostth2lem2  22768  ostth2  22771
  Copyright terms: Public domain W3C validator