MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvle Structured version   Unicode version

Theorem qabvle 24447
Description: By using induction on  N, we show a long-range inequality coming from the triangle inequality. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvle  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )

Proof of Theorem qabvle
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 5877 . . . . 5  |-  ( k  =  0  ->  ( F `  k )  =  ( F ` 
0 ) )
2 id 23 . . . . 5  |-  ( k  =  0  ->  k  =  0 )
31, 2breq12d 4433 . . . 4  |-  ( k  =  0  ->  (
( F `  k
)  <_  k  <->  ( F `  0 )  <_ 
0 ) )
43imbi2d 317 . . 3  |-  ( k  =  0  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  0
)  <_  0 ) ) )
5 fveq2 5877 . . . . 5  |-  ( k  =  n  ->  ( F `  k )  =  ( F `  n ) )
6 id 23 . . . . 5  |-  ( k  =  n  ->  k  =  n )
75, 6breq12d 4433 . . . 4  |-  ( k  =  n  ->  (
( F `  k
)  <_  k  <->  ( F `  n )  <_  n
) )
87imbi2d 317 . . 3  |-  ( k  =  n  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  n
)  <_  n )
) )
9 fveq2 5877 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( F `  k )  =  ( F `  ( n  +  1
) ) )
10 id 23 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  k  =  ( n  + 
1 ) )
119, 10breq12d 4433 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  k
)  <_  k  <->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) ) )
1211imbi2d 317 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
13 fveq2 5877 . . . . 5  |-  ( k  =  N  ->  ( F `  k )  =  ( F `  N ) )
14 id 23 . . . . 5  |-  ( k  =  N  ->  k  =  N )
1513, 14breq12d 4433 . . . 4  |-  ( k  =  N  ->  (
( F `  k
)  <_  k  <->  ( F `  N )  <_  N
) )
1615imbi2d 317 . . 3  |-  ( k  =  N  ->  (
( F  e.  A  ->  ( F `  k
)  <_  k )  <->  ( F  e.  A  -> 
( F `  N
)  <_  N )
) )
17 qabsabv.a . . . . 5  |-  A  =  (AbsVal `  Q )
18 qrng.q . . . . . 6  |-  Q  =  (flds  QQ )
1918qrng0 24443 . . . . 5  |-  0  =  ( 0g `  Q )
2017, 19abv0 18044 . . . 4  |-  ( F  e.  A  ->  ( F `  0 )  =  0 )
21 0le0 10699 . . . 4  |-  0  <_  0
2220, 21syl6eqbr 4458 . . 3  |-  ( F  e.  A  ->  ( F `  0 )  <_  0 )
23 nn0p1nn 10909 . . . . . . . . . 10  |-  ( n  e.  NN0  ->  ( n  +  1 )  e.  NN )
2423ad2antrl 732 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  NN )
25 nnq 11277 . . . . . . . . 9  |-  ( ( n  +  1 )  e.  NN  ->  (
n  +  1 )  e.  QQ )
2624, 25syl 17 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  QQ )
2718qrngbas 24441 . . . . . . . . 9  |-  QQ  =  ( Base `  Q )
2817, 27abvcl 18037 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  +  1
)  e.  QQ )  ->  ( F `  ( n  +  1
) )  e.  RR )
2926, 28syldan 472 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  e.  RR )
30 nn0z 10960 . . . . . . . . . . 11  |-  ( n  e.  NN0  ->  n  e.  ZZ )
3130ad2antrl 732 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  ZZ )
32 zq 11270 . . . . . . . . . 10  |-  ( n  e.  ZZ  ->  n  e.  QQ )
3331, 32syl 17 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  QQ )
3417, 27abvcl 18037 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ )  ->  ( F `  n
)  e.  RR )
3533, 34syldan 472 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  e.  RR )
36 peano2re 9806 . . . . . . . 8  |-  ( ( F `  n )  e.  RR  ->  (
( F `  n
)  +  1 )  e.  RR )
3735, 36syl 17 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  e.  RR )
3831zred 11040 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  n  e.  RR )
39 peano2re 9806 . . . . . . . 8  |-  ( n  e.  RR  ->  (
n  +  1 )  e.  RR )
4038, 39syl 17 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( n  +  1 )  e.  RR )
41 simpl 458 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  F  e.  A )
42 1z 10967 . . . . . . . . . 10  |-  1  e.  ZZ
43 zq 11270 . . . . . . . . . 10  |-  ( 1  e.  ZZ  ->  1  e.  QQ )
4442, 43mp1i 13 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  QQ )
45 qex 11276 . . . . . . . . . . 11  |-  QQ  e.  _V
46 cnfldadd 18960 . . . . . . . . . . . 12  |-  +  =  ( +g  ` fld )
4718, 46ressplusg 15224 . . . . . . . . . . 11  |-  ( QQ  e.  _V  ->  +  =  ( +g  `  Q
) )
4845, 47ax-mp 5 . . . . . . . . . 10  |-  +  =  ( +g  `  Q )
4917, 27, 48abvtri 18043 . . . . . . . . 9  |-  ( ( F  e.  A  /\  n  e.  QQ  /\  1  e.  QQ )  ->  ( F `  ( n  +  1 ) )  <_  ( ( F `
 n )  +  ( F `  1
) ) )
5041, 33, 44, 49syl3anc 1264 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  ( F `
 1 ) ) )
51 ax-1ne0 9608 . . . . . . . . . . 11  |-  1  =/=  0
5218qrng1 24444 . . . . . . . . . . . 12  |-  1  =  ( 1r `  Q )
5317, 52, 19abv1z 18045 . . . . . . . . . . 11  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
5451, 53mpan2 675 . . . . . . . . . 10  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
5554adantr 466 . . . . . . . . 9  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  1 )  =  1 )
5655oveq2d 6317 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  ( F ` 
1 ) )  =  ( ( F `  n )  +  1 ) )
5750, 56breqtrd 4445 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
( F `  n
)  +  1 ) )
58 1red 9658 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  1  e.  RR )
59 simprr 764 . . . . . . . 8  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  n )  <_  n
)
6035, 38, 58, 59leadd1dd 10227 . . . . . . 7  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( ( F `  n )  +  1 )  <_ 
( n  +  1 ) )
6129, 37, 40, 57, 60letrd 9792 . . . . . 6  |-  ( ( F  e.  A  /\  ( n  e.  NN0  /\  ( F `  n
)  <_  n )
)  ->  ( F `  ( n  +  1 ) )  <_  (
n  +  1 ) )
6261expr 618 . . . . 5  |-  ( ( F  e.  A  /\  n  e.  NN0 )  -> 
( ( F `  n )  <_  n  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) )
6362expcom 436 . . . 4  |-  ( n  e.  NN0  ->  ( F  e.  A  ->  (
( F `  n
)  <_  n  ->  ( F `  ( n  +  1 ) )  <_  ( n  + 
1 ) ) ) )
6463a2d 29 . . 3  |-  ( n  e.  NN0  ->  ( ( F  e.  A  -> 
( F `  n
)  <_  n )  ->  ( F  e.  A  ->  ( F `  (
n  +  1 ) )  <_  ( n  +  1 ) ) ) )
654, 8, 12, 16, 22, 64nn0ind 11030 . 2  |-  ( N  e.  NN0  ->  ( F  e.  A  ->  ( F `  N )  <_  N ) )
6665impcom 431 1  |-  ( ( F  e.  A  /\  N  e.  NN0 )  -> 
( F `  N
)  <_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 370    = wceq 1437    e. wcel 1868    =/= wne 2618   _Vcvv 3081   class class class wbr 4420   ` cfv 5597  (class class class)co 6301   RRcr 9538   0cc0 9539   1c1 9540    + caddc 9542    <_ cle 9676   NNcn 10609   NN0cn0 10869   ZZcz 10937   QQcq 11264   ↾s cress 15107   +g cplusg 15175  AbsValcabv 18029  ℂfldccnfld 18955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1665  ax-4 1678  ax-5 1748  ax-6 1794  ax-7 1839  ax-8 1870  ax-9 1872  ax-10 1887  ax-11 1892  ax-12 1905  ax-13 2053  ax-ext 2400  ax-rep 4533  ax-sep 4543  ax-nul 4551  ax-pow 4598  ax-pr 4656  ax-un 6593  ax-cnex 9595  ax-resscn 9596  ax-1cn 9597  ax-icn 9598  ax-addcl 9599  ax-addrcl 9600  ax-mulcl 9601  ax-mulrcl 9602  ax-mulcom 9603  ax-addass 9604  ax-mulass 9605  ax-distr 9606  ax-i2m1 9607  ax-1ne0 9608  ax-1rid 9609  ax-rnegex 9610  ax-rrecex 9611  ax-cnre 9612  ax-pre-lttri 9613  ax-pre-lttrn 9614  ax-pre-ltadd 9615  ax-pre-mulgt0 9616  ax-addf 9618  ax-mulf 9619
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1660  df-nf 1664  df-sb 1787  df-eu 2269  df-mo 2270  df-clab 2408  df-cleq 2414  df-clel 2417  df-nfc 2572  df-ne 2620  df-nel 2621  df-ral 2780  df-rex 2781  df-reu 2782  df-rmo 2783  df-rab 2784  df-v 3083  df-sbc 3300  df-csb 3396  df-dif 3439  df-un 3441  df-in 3443  df-ss 3450  df-pss 3452  df-nul 3762  df-if 3910  df-pw 3981  df-sn 3997  df-pr 3999  df-tp 4001  df-op 4003  df-uni 4217  df-int 4253  df-iun 4298  df-br 4421  df-opab 4480  df-mpt 4481  df-tr 4516  df-eprel 4760  df-id 4764  df-po 4770  df-so 4771  df-fr 4808  df-we 4810  df-xp 4855  df-rel 4856  df-cnv 4857  df-co 4858  df-dm 4859  df-rn 4860  df-res 4861  df-ima 4862  df-pred 5395  df-ord 5441  df-on 5442  df-lim 5443  df-suc 5444  df-iota 5561  df-fun 5599  df-fn 5600  df-f 5601  df-f1 5602  df-fo 5603  df-f1o 5604  df-fv 5605  df-riota 6263  df-ov 6304  df-oprab 6305  df-mpt2 6306  df-om 6703  df-1st 6803  df-2nd 6804  df-tpos 6977  df-wrecs 7032  df-recs 7094  df-rdg 7132  df-1o 7186  df-oadd 7190  df-er 7367  df-map 7478  df-en 7574  df-dom 7575  df-sdom 7576  df-fin 7577  df-pnf 9677  df-mnf 9678  df-xr 9679  df-ltxr 9680  df-le 9681  df-sub 9862  df-neg 9863  df-div 10270  df-nn 10610  df-2 10668  df-3 10669  df-4 10670  df-5 10671  df-6 10672  df-7 10673  df-8 10674  df-9 10675  df-10 10676  df-n0 10870  df-z 10938  df-dec 11052  df-uz 11160  df-q 11265  df-ico 11641  df-fz 11785  df-struct 15108  df-ndx 15109  df-slot 15110  df-base 15111  df-sets 15112  df-ress 15113  df-plusg 15188  df-mulr 15189  df-starv 15190  df-tset 15194  df-ple 15195  df-ds 15197  df-unif 15198  df-0g 15325  df-mgm 16473  df-sgrp 16512  df-mnd 16522  df-grp 16658  df-minusg 16659  df-subg 16799  df-cmn 17417  df-mgp 17709  df-ur 17721  df-ring 17767  df-cring 17768  df-oppr 17836  df-dvdsr 17854  df-unit 17855  df-invr 17885  df-dvr 17896  df-drng 17962  df-subrg 17991  df-abv 18030  df-cnfld 18956
This theorem is referenced by:  ostth2lem2  24456  ostth2  24459
  Copyright terms: Public domain W3C validator