MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  qabvexp Structured version   Unicode version

Theorem qabvexp 23536
Description: Induct the product rule abvmul 17258 to find the absolute value of a power. (Contributed by Mario Carneiro, 10-Sep-2014.)
Hypotheses
Ref Expression
qrng.q  |-  Q  =  (flds  QQ )
qabsabv.a  |-  A  =  (AbsVal `  Q )
Assertion
Ref Expression
qabvexp  |-  ( ( F  e.  A  /\  M  e.  QQ  /\  N  e.  NN0 )  ->  ( F `  ( M ^ N ) )  =  ( ( F `  M ) ^ N
) )

Proof of Theorem qabvexp
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 6290 . . . . . . 7  |-  ( k  =  0  ->  ( M ^ k )  =  ( M ^ 0 ) )
21fveq2d 5868 . . . . . 6  |-  ( k  =  0  ->  ( F `  ( M ^ k ) )  =  ( F `  ( M ^ 0 ) ) )
3 oveq2 6290 . . . . . 6  |-  ( k  =  0  ->  (
( F `  M
) ^ k )  =  ( ( F `
 M ) ^
0 ) )
42, 3eqeq12d 2489 . . . . 5  |-  ( k  =  0  ->  (
( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k )  <->  ( F `  ( M ^ 0 ) )  =  ( ( F `  M
) ^ 0 ) ) )
54imbi2d 316 . . . 4  |-  ( k  =  0  ->  (
( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k ) )  <->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ 0 ) )  =  ( ( F `
 M ) ^
0 ) ) ) )
6 oveq2 6290 . . . . . . 7  |-  ( k  =  n  ->  ( M ^ k )  =  ( M ^ n
) )
76fveq2d 5868 . . . . . 6  |-  ( k  =  n  ->  ( F `  ( M ^ k ) )  =  ( F `  ( M ^ n ) ) )
8 oveq2 6290 . . . . . 6  |-  ( k  =  n  ->  (
( F `  M
) ^ k )  =  ( ( F `
 M ) ^
n ) )
97, 8eqeq12d 2489 . . . . 5  |-  ( k  =  n  ->  (
( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k )  <->  ( F `  ( M ^ n
) )  =  ( ( F `  M
) ^ n ) ) )
109imbi2d 316 . . . 4  |-  ( k  =  n  ->  (
( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k ) )  <->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ n ) )  =  ( ( F `
 M ) ^
n ) ) ) )
11 oveq2 6290 . . . . . . 7  |-  ( k  =  ( n  + 
1 )  ->  ( M ^ k )  =  ( M ^ (
n  +  1 ) ) )
1211fveq2d 5868 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( F `  ( M ^ k ) )  =  ( F `  ( M ^ ( n  +  1 ) ) ) )
13 oveq2 6290 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  M
) ^ k )  =  ( ( F `
 M ) ^
( n  +  1 ) ) )
1412, 13eqeq12d 2489 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  (
( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k )  <->  ( F `  ( M ^ (
n  +  1 ) ) )  =  ( ( F `  M
) ^ ( n  +  1 ) ) ) )
1514imbi2d 316 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k ) )  <->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ ( n  + 
1 ) ) )  =  ( ( F `
 M ) ^
( n  +  1 ) ) ) ) )
16 oveq2 6290 . . . . . . 7  |-  ( k  =  N  ->  ( M ^ k )  =  ( M ^ N
) )
1716fveq2d 5868 . . . . . 6  |-  ( k  =  N  ->  ( F `  ( M ^ k ) )  =  ( F `  ( M ^ N ) ) )
18 oveq2 6290 . . . . . 6  |-  ( k  =  N  ->  (
( F `  M
) ^ k )  =  ( ( F `
 M ) ^ N ) )
1917, 18eqeq12d 2489 . . . . 5  |-  ( k  =  N  ->  (
( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k )  <->  ( F `  ( M ^ N
) )  =  ( ( F `  M
) ^ N ) ) )
2019imbi2d 316 . . . 4  |-  ( k  =  N  ->  (
( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ k ) )  =  ( ( F `
 M ) ^
k ) )  <->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ N ) )  =  ( ( F `
 M ) ^ N ) ) ) )
21 ax-1ne0 9557 . . . . . . 7  |-  1  =/=  0
22 qabsabv.a . . . . . . . 8  |-  A  =  (AbsVal `  Q )
23 qrng.q . . . . . . . . 9  |-  Q  =  (flds  QQ )
2423qrng1 23532 . . . . . . . 8  |-  1  =  ( 1r `  Q )
2523qrng0 23531 . . . . . . . 8  |-  0  =  ( 0g `  Q )
2622, 24, 25abv1z 17261 . . . . . . 7  |-  ( ( F  e.  A  /\  1  =/=  0 )  -> 
( F `  1
)  =  1 )
2721, 26mpan2 671 . . . . . 6  |-  ( F  e.  A  ->  ( F `  1 )  =  1 )
2827adantr 465 . . . . 5  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  1
)  =  1 )
29 qcn 11192 . . . . . . . 8  |-  ( M  e.  QQ  ->  M  e.  CC )
3029adantl 466 . . . . . . 7  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  M  e.  CC )
3130exp0d 12266 . . . . . 6  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( M ^ 0 )  =  1 )
3231fveq2d 5868 . . . . 5  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ 0 ) )  =  ( F ` 
1 ) )
3323qrngbas 23529 . . . . . . . 8  |-  QQ  =  ( Base `  Q )
3422, 33abvcl 17253 . . . . . . 7  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  M
)  e.  RR )
3534recnd 9618 . . . . . 6  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  M
)  e.  CC )
3635exp0d 12266 . . . . 5  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( ( F `  M ) ^ 0 )  =  1 )
3728, 32, 363eqtr4d 2518 . . . 4  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ 0 ) )  =  ( ( F `
 M ) ^
0 ) )
38 oveq1 6289 . . . . . . 7  |-  ( ( F `  ( M ^ n ) )  =  ( ( F `
 M ) ^
n )  ->  (
( F `  ( M ^ n ) )  x.  ( F `  M ) )  =  ( ( ( F `
 M ) ^
n )  x.  ( F `  M )
) )
39 expp1 12136 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  n  e.  NN0 )  -> 
( M ^ (
n  +  1 ) )  =  ( ( M ^ n )  x.  M ) )
4030, 39sylan 471 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( M ^
( n  +  1 ) )  =  ( ( M ^ n
)  x.  M ) )
4140fveq2d 5868 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( F `  ( M ^ ( n  +  1 ) ) )  =  ( F `
 ( ( M ^ n )  x.  M ) ) )
42 simpll 753 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  F  e.  A
)
43 qexpcl 12145 . . . . . . . . . . 11  |-  ( ( M  e.  QQ  /\  n  e.  NN0 )  -> 
( M ^ n
)  e.  QQ )
4443adantll 713 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( M ^
n )  e.  QQ )
45 simplr 754 . . . . . . . . . 10  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  M  e.  QQ )
46 qex 11190 . . . . . . . . . . . 12  |-  QQ  e.  _V
47 cnfldmul 18194 . . . . . . . . . . . . 13  |-  x.  =  ( .r ` fld )
4823, 47ressmulr 14601 . . . . . . . . . . . 12  |-  ( QQ  e.  _V  ->  x.  =  ( .r `  Q ) )
4946, 48ax-mp 5 . . . . . . . . . . 11  |-  x.  =  ( .r `  Q )
5022, 33, 49abvmul 17258 . . . . . . . . . 10  |-  ( ( F  e.  A  /\  ( M ^ n )  e.  QQ  /\  M  e.  QQ )  ->  ( F `  ( ( M ^ n )  x.  M ) )  =  ( ( F `  ( M ^ n ) )  x.  ( F `
 M ) ) )
5142, 44, 45, 50syl3anc 1228 . . . . . . . . 9  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( F `  ( ( M ^
n )  x.  M
) )  =  ( ( F `  ( M ^ n ) )  x.  ( F `  M ) ) )
5241, 51eqtrd 2508 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( F `  ( M ^ ( n  +  1 ) ) )  =  ( ( F `  ( M ^ n ) )  x.  ( F `  M ) ) )
53 expp1 12136 . . . . . . . . 9  |-  ( ( ( F `  M
)  e.  CC  /\  n  e.  NN0 )  -> 
( ( F `  M ) ^ (
n  +  1 ) )  =  ( ( ( F `  M
) ^ n )  x.  ( F `  M ) ) )
5435, 53sylan 471 . . . . . . . 8  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( ( F `
 M ) ^
( n  +  1 ) )  =  ( ( ( F `  M ) ^ n
)  x.  ( F `
 M ) ) )
5552, 54eqeq12d 2489 . . . . . . 7  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( ( F `
 ( M ^
( n  +  1 ) ) )  =  ( ( F `  M ) ^ (
n  +  1 ) )  <->  ( ( F `
 ( M ^
n ) )  x.  ( F `  M
) )  =  ( ( ( F `  M ) ^ n
)  x.  ( F `
 M ) ) ) )
5638, 55syl5ibr 221 . . . . . 6  |-  ( ( ( F  e.  A  /\  M  e.  QQ )  /\  n  e.  NN0 )  ->  ( ( F `
 ( M ^
n ) )  =  ( ( F `  M ) ^ n
)  ->  ( F `  ( M ^ (
n  +  1 ) ) )  =  ( ( F `  M
) ^ ( n  +  1 ) ) ) )
5756expcom 435 . . . . 5  |-  ( n  e.  NN0  ->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( ( F `  ( M ^ n ) )  =  ( ( F `  M ) ^ n )  -> 
( F `  ( M ^ ( n  + 
1 ) ) )  =  ( ( F `
 M ) ^
( n  +  1 ) ) ) ) )
5857a2d 26 . . . 4  |-  ( n  e.  NN0  ->  ( ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ n ) )  =  ( ( F `  M ) ^ n ) )  ->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ ( n  + 
1 ) ) )  =  ( ( F `
 M ) ^
( n  +  1 ) ) ) ) )
595, 10, 15, 20, 37, 58nn0ind 10953 . . 3  |-  ( N  e.  NN0  ->  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( F `  ( M ^ N ) )  =  ( ( F `
 M ) ^ N ) ) )
6059com12 31 . 2  |-  ( ( F  e.  A  /\  M  e.  QQ )  ->  ( N  e.  NN0  ->  ( F `  ( M ^ N ) )  =  ( ( F `
 M ) ^ N ) ) )
61603impia 1193 1  |-  ( ( F  e.  A  /\  M  e.  QQ  /\  N  e.  NN0 )  ->  ( F `  ( M ^ N ) )  =  ( ( F `  M ) ^ N
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    /\ w3a 973    = wceq 1379    e. wcel 1767    =/= wne 2662   _Vcvv 3113   ` cfv 5586  (class class class)co 6282   CCcc 9486   0cc0 9488   1c1 9489    + caddc 9491    x. cmul 9493   NN0cn0 10791   QQcq 11178   ^cexp 12129   ↾s cress 14484   .rcmulr 14549  AbsValcabv 17245  ℂfldccnfld 18188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1601  ax-4 1612  ax-5 1680  ax-6 1719  ax-7 1739  ax-8 1769  ax-9 1771  ax-10 1786  ax-11 1791  ax-12 1803  ax-13 1968  ax-ext 2445  ax-rep 4558  ax-sep 4568  ax-nul 4576  ax-pow 4625  ax-pr 4686  ax-un 6574  ax-cnex 9544  ax-resscn 9545  ax-1cn 9546  ax-icn 9547  ax-addcl 9548  ax-addrcl 9549  ax-mulcl 9550  ax-mulrcl 9551  ax-mulcom 9552  ax-addass 9553  ax-mulass 9554  ax-distr 9555  ax-i2m1 9556  ax-1ne0 9557  ax-1rid 9558  ax-rnegex 9559  ax-rrecex 9560  ax-cnre 9561  ax-pre-lttri 9562  ax-pre-lttrn 9563  ax-pre-ltadd 9564  ax-pre-mulgt0 9565  ax-addf 9567  ax-mulf 9568
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1382  df-ex 1597  df-nf 1600  df-sb 1712  df-eu 2279  df-mo 2280  df-clab 2453  df-cleq 2459  df-clel 2462  df-nfc 2617  df-ne 2664  df-nel 2665  df-ral 2819  df-rex 2820  df-reu 2821  df-rmo 2822  df-rab 2823  df-v 3115  df-sbc 3332  df-csb 3436  df-dif 3479  df-un 3481  df-in 3483  df-ss 3490  df-pss 3492  df-nul 3786  df-if 3940  df-pw 4012  df-sn 4028  df-pr 4030  df-tp 4032  df-op 4034  df-uni 4246  df-int 4283  df-iun 4327  df-br 4448  df-opab 4506  df-mpt 4507  df-tr 4541  df-eprel 4791  df-id 4795  df-po 4800  df-so 4801  df-fr 4838  df-we 4840  df-ord 4881  df-on 4882  df-lim 4883  df-suc 4884  df-xp 5005  df-rel 5006  df-cnv 5007  df-co 5008  df-dm 5009  df-rn 5010  df-res 5011  df-ima 5012  df-iota 5549  df-fun 5588  df-fn 5589  df-f 5590  df-f1 5591  df-fo 5592  df-f1o 5593  df-fv 5594  df-riota 6243  df-ov 6285  df-oprab 6286  df-mpt2 6287  df-om 6679  df-1st 6781  df-2nd 6782  df-tpos 6952  df-recs 7039  df-rdg 7073  df-1o 7127  df-oadd 7131  df-er 7308  df-map 7419  df-en 7514  df-dom 7515  df-sdom 7516  df-fin 7517  df-pnf 9626  df-mnf 9627  df-xr 9628  df-ltxr 9629  df-le 9630  df-sub 9803  df-neg 9804  df-div 10203  df-nn 10533  df-2 10590  df-3 10591  df-4 10592  df-5 10593  df-6 10594  df-7 10595  df-8 10596  df-9 10597  df-10 10598  df-n0 10792  df-z 10861  df-dec 10973  df-uz 11079  df-q 11179  df-ico 11531  df-fz 11669  df-seq 12071  df-exp 12130  df-struct 14485  df-ndx 14486  df-slot 14487  df-base 14488  df-sets 14489  df-ress 14490  df-plusg 14561  df-mulr 14562  df-starv 14563  df-tset 14567  df-ple 14568  df-ds 14570  df-unif 14571  df-0g 14690  df-mnd 15725  df-grp 15855  df-minusg 15856  df-subg 15990  df-cmn 16593  df-mgp 16929  df-ur 16941  df-rng 16985  df-cring 16986  df-oppr 17053  df-dvdsr 17071  df-unit 17072  df-invr 17102  df-dvr 17113  df-drng 17178  df-subrg 17207  df-abv 17246  df-cnfld 18189
This theorem is referenced by:  ostth2lem2  23544  ostth2lem3  23545  ostth3  23548
  Copyright terms: Public domain W3C validator