MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem2 Structured version   Unicode version

Theorem pythagtriplem2 13867
Description: Lemma for pythagtrip 13884. Prove the full version of one direction of the theorem. (Contributed by Scott Fenton, 28-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
Distinct variable groups:    A, n, m, k    B, n, m, k    C, n, m, k

Proof of Theorem pythagtriplem2
StepHypRef Expression
1 ovex 6105 . . . . . . . 8  |-  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e. 
_V
2 ovex 6105 . . . . . . . 8  |-  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  e. 
_V
3 preq12bg 4039 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN )  /\  ( ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  e. 
_V  /\  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  e.  _V ) )  ->  ( { A ,  B }  =  { ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n ) ) ) }  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) ) ) )
41, 2, 3mpanr12 678 . . . . . . 7  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  <-> 
( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) ) ) )
54anbi1d 697 . . . . . 6  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
6 andir 856 . . . . . . 7  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
7 df-3an 960 . . . . . . . 8  |-  ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
8 df-3an 960 . . . . . . . 8  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
97, 8orbi12i 518 . . . . . . 7  |-  ( ( ( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
106, 9bitr4i 252 . . . . . 6  |-  ( ( ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) )
115, 10syl6bb 261 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) ) ) )
1211rexbidv 2726 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. k  e.  NN  ( ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) ) )
13122rexbidv 2748 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) ) )
14 r19.43 2866 . . . . 5  |-  ( E. k  e.  NN  (
( A  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
15142rexbii 2732 . . . 4  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. k  e.  NN  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) ) )
16 r19.43 2866 . . . . 5  |-  ( E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
1716rexbii 2730 . . . 4  |-  ( E. n  e.  NN  E. m  e.  NN  ( E. k  e.  NN  ( A  =  (
k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  \/  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  <->  E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
18 r19.43 2866 . . . 4  |-  ( E. n  e.  NN  ( E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/ 
E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )  <-> 
( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
1915, 17, 183bitri 271 . . 3  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( ( A  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  B  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  \/  ( A  =  ( k  x.  ( 2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^ 2 )  -  ( n ^
2 ) ) )  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) )
2013, 19syl6bb 261 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  <->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) ) ) )
21 pythagtriplem1 13866 . . . 4  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) )
2221a1i 11 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
23 3ancoma 965 . . . . . . 7  |-  ( ( A  =  ( k  x.  ( 2  x.  ( m  x.  n
) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  ( B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) ) )
2423rexbii 2730 . . . . . 6  |-  ( E. k  e.  NN  ( A  =  ( k  x.  ( 2  x.  (
m  x.  n ) ) )  /\  B  =  ( k  x.  ( ( m ^
2 )  -  (
n ^ 2 ) ) )  /\  C  =  ( k  x.  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )  <->  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
25242rexbii 2732 . . . . 5  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  <->  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )
26 pythagtriplem1 13866 . . . . 5  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^
2 ) )
2725, 26sylbi 195 . . . 4  |-  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( B ^ 2 )  +  ( A ^ 2 ) )  =  ( C ^
2 ) )
28 nncn 10318 . . . . . . 7  |-  ( A  e.  NN  ->  A  e.  CC )
2928sqcld 11990 . . . . . 6  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
30 nncn 10318 . . . . . . 7  |-  ( B  e.  NN  ->  B  e.  CC )
3130sqcld 11990 . . . . . 6  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
32 addcom 9543 . . . . . 6  |-  ( ( ( A ^ 2 )  e.  CC  /\  ( B ^ 2 )  e.  CC )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( B ^ 2 )  +  ( A ^
2 ) ) )
3329, 31, 32syl2an 474 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( ( B ^ 2 )  +  ( A ^
2 ) ) )
3433eqeq1d 2441 . . . 4  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  <-> 
( ( B ^
2 )  +  ( A ^ 2 ) )  =  ( C ^ 2 ) ) )
3527, 34syl5ibr 221 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  ->  (
( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 ) ) )
3622, 35jaod 380 . 2  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  B  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) )  \/  E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( A  =  ( k  x.  (
2  x.  ( m  x.  n ) ) )  /\  B  =  ( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) )  /\  C  =  ( k  x.  (
( m ^ 2 )  +  ( n ^ 2 ) ) ) ) )  -> 
( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
3720, 36sylbid 215 1  |-  ( ( A  e.  NN  /\  B  e.  NN )  ->  ( E. n  e.  NN  E. m  e.  NN  E. k  e.  NN  ( { A ,  B }  =  {
( k  x.  (
( m ^ 2 )  -  ( n ^ 2 ) ) ) ,  ( k  x.  ( 2  x.  ( m  x.  n
) ) ) }  /\  C  =  ( k  x.  ( ( m ^ 2 )  +  ( n ^
2 ) ) ) )  ->  ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    \/ wo 368    /\ wa 369    /\ w3a 958    = wceq 1362    e. wcel 1755   E.wrex 2706   _Vcvv 2962   {cpr 3867  (class class class)co 6080   CCcc 9268    + caddc 9273    x. cmul 9275    - cmin 9583   NNcn 10310   2c2 10359   ^cexp 11849
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-om 6466  df-2nd 6567  df-recs 6818  df-rdg 6852  df-er 7089  df-en 7299  df-dom 7300  df-sdom 7301  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-n0 10568  df-z 10635  df-uz 10850  df-seq 11791  df-exp 11850
This theorem is referenced by:  pythagtrip  13884
  Copyright terms: Public domain W3C validator