MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem18 Structured version   Unicode version

Theorem pythagtriplem18 14204
Description: Lemma for pythagtrip 14206. Wrap the previous  M and  N up in quantifiers. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
pythagtriplem18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Distinct variable groups:    A, m, n    B, m, n    C, m, n

Proof of Theorem pythagtriplem18
StepHypRef Expression
1 eqid 2460 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )
21pythagtriplem13 14199 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
3 eqid 2460 . . 3  |-  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  =  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )
43pythagtriplem11 14197 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN )
53, 1pythagtriplem15 14201 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
63, 1pythagtriplem16 14202 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
73, 1pythagtriplem17 14203 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
8 oveq1 6282 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( n ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
98oveq2d 6291 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( n ^
2 ) )  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
109eqeq2d 2474 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( n ^ 2 ) )  <->  A  =  ( ( m ^
2 )  -  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
11 oveq2 6283 . . . . . 6  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  n )  =  ( m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
1211oveq2d 6291 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  n ) )  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
1312eqeq2d 2474 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  n
) )  <->  B  =  ( 2  x.  (
m  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
148oveq2d 6291 . . . . 5  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( n ^
2 ) )  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) )
1514eqeq2d 2474 . . . 4  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( n ^ 2 ) )  <->  C  =  ( ( m ^
2 )  +  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 ) ) ) )
1610, 13, 153anbi123d 1294 . . 3  |-  ( n  =  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) )  <-> 
( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
17 oveq1 6282 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )
1817oveq1d 6290 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
1918eqeq2d 2474 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( A  =  ( ( m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  A  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
20 oveq1 6282 . . . . . 6  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )
2120oveq2d 6291 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( 2  x.  ( m  x.  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ) )  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) )
2221eqeq2d 2474 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  <-> 
B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) ) ) )
2317oveq1d 6290 . . . . 5  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( (
m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )
2423eqeq2d 2474 . . . 4  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 ) )  <->  C  =  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )
2519, 22, 243anbi123d 1294 . . 3  |-  ( m  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  ->  ( ( A  =  ( (
m ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( m  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( m ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) )  <->  ( A  =  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) ) )
2616, 25rspc2ev 3218 . 2  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )  e.  NN  /\  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  e.  NN  /\  ( A  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  -  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) )  /\  B  =  ( 2  x.  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ) )  /\  C  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )  +  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 ) ) ) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( (
m ^ 2 )  -  ( n ^
2 ) )  /\  B  =  ( 2  x.  ( m  x.  n ) )  /\  C  =  ( (
m ^ 2 )  +  ( n ^
2 ) ) ) )
272, 4, 5, 6, 7, 26syl113anc 1235 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  E. n  e.  NN  E. m  e.  NN  ( A  =  ( ( m ^
2 )  -  (
n ^ 2 ) )  /\  B  =  ( 2  x.  (
m  x.  n ) )  /\  C  =  ( ( m ^
2 )  +  ( n ^ 2 ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 968    = wceq 1374    e. wcel 1762   E.wrex 2808   class class class wbr 4440   ` cfv 5579  (class class class)co 6275   1c1 9482    + caddc 9484    x. cmul 9486    - cmin 9794    / cdiv 10195   NNcn 10525   2c2 10574   ^cexp 12122   sqrcsqr 13016    || cdivides 13836    gcd cgcd 13992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1714  ax-7 1734  ax-8 1764  ax-9 1766  ax-10 1781  ax-11 1786  ax-12 1798  ax-13 1961  ax-ext 2438  ax-sep 4561  ax-nul 4569  ax-pow 4618  ax-pr 4679  ax-un 6567  ax-cnex 9537  ax-resscn 9538  ax-1cn 9539  ax-icn 9540  ax-addcl 9541  ax-addrcl 9542  ax-mulcl 9543  ax-mulrcl 9544  ax-mulcom 9545  ax-addass 9546  ax-mulass 9547  ax-distr 9548  ax-i2m1 9549  ax-1ne0 9550  ax-1rid 9551  ax-rnegex 9552  ax-rrecex 9553  ax-cnre 9554  ax-pre-lttri 9555  ax-pre-lttrn 9556  ax-pre-ltadd 9557  ax-pre-mulgt0 9558  ax-pre-sup 9559
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 969  df-3an 970  df-tru 1377  df-ex 1592  df-nf 1595  df-sb 1707  df-eu 2272  df-mo 2273  df-clab 2446  df-cleq 2452  df-clel 2455  df-nfc 2610  df-ne 2657  df-nel 2658  df-ral 2812  df-rex 2813  df-reu 2814  df-rmo 2815  df-rab 2816  df-v 3108  df-sbc 3325  df-csb 3429  df-dif 3472  df-un 3474  df-in 3476  df-ss 3483  df-pss 3485  df-nul 3779  df-if 3933  df-pw 4005  df-sn 4021  df-pr 4023  df-tp 4025  df-op 4027  df-uni 4239  df-int 4276  df-iun 4320  df-br 4441  df-opab 4499  df-mpt 4500  df-tr 4534  df-eprel 4784  df-id 4788  df-po 4793  df-so 4794  df-fr 4831  df-we 4833  df-ord 4874  df-on 4875  df-lim 4876  df-suc 4877  df-xp 4998  df-rel 4999  df-cnv 5000  df-co 5001  df-dm 5002  df-rn 5003  df-res 5004  df-ima 5005  df-iota 5542  df-fun 5581  df-fn 5582  df-f 5583  df-f1 5584  df-fo 5585  df-f1o 5586  df-fv 5587  df-riota 6236  df-ov 6278  df-oprab 6279  df-mpt2 6280  df-om 6672  df-1st 6774  df-2nd 6775  df-recs 7032  df-rdg 7066  df-1o 7120  df-2o 7121  df-oadd 7124  df-er 7301  df-en 7507  df-dom 7508  df-sdom 7509  df-fin 7510  df-sup 7890  df-pnf 9619  df-mnf 9620  df-xr 9621  df-ltxr 9622  df-le 9623  df-sub 9796  df-neg 9797  df-div 10196  df-nn 10526  df-2 10583  df-3 10584  df-n0 10785  df-z 10854  df-uz 11072  df-rp 11210  df-fz 11662  df-fl 11886  df-mod 11953  df-seq 12064  df-exp 12123  df-cj 12882  df-re 12883  df-im 12884  df-sqr 13018  df-abs 13019  df-dvds 13837  df-gcd 13993  df-prm 14066
This theorem is referenced by:  pythagtriplem19  14205
  Copyright terms: Public domain W3C validator