MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem16 Structured version   Unicode version

Theorem pythagtriplem16 14723
Description: Lemma for pythagtrip 14727. Show the relationship between  M,  N, and  B. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypotheses
Ref Expression
pythagtriplem15.1  |-  M  =  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )
pythagtriplem15.2  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( M  x.  N
) ) )

Proof of Theorem pythagtriplem16
StepHypRef Expression
1 pythagtriplem15.1 . . . . 5  |-  M  =  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )
2 pythagtriplem15.2 . . . . 5  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
31, 2oveq12i 6261 . . . 4  |-  ( M  x.  N )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  /  2
)  x.  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )
4 nncn 10568 . . . . . . . . . . . 12  |-  ( C  e.  NN  ->  C  e.  CC )
5 nncn 10568 . . . . . . . . . . . 12  |-  ( B  e.  NN  ->  B  e.  CC )
6 addcl 9572 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
74, 5, 6syl2anr 480 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  CC )
87sqrtcld 13442 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B )
)  e.  CC )
9 subcl 9825 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
104, 5, 9syl2anr 480 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  CC )
1110sqrtcld 13442 . . . . . . . . . 10  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B )
)  e.  CC )
12 addcl 9572 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
138, 11, 12syl2anc 665 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
14133adant1 1023 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
15143ad2ant1 1026 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC )
16 subcl 9825 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
178, 11, 16syl2anc 665 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
18173adant1 1023 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
19183ad2ant1 1026 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
20 2cnne0 10775 . . . . . . . 8  |-  ( 2  e.  CC  /\  2  =/=  0 )
21 divmuldiv 10258 . . . . . . . 8  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  e.  CC  /\  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )  /\  (
( 2  e.  CC  /\  2  =/=  0 )  /\  ( 2  e.  CC  /\  2  =/=  0 ) ) )  ->  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  ( 2  x.  2 ) ) )
2220, 20, 21mpanr12 689 . . . . . . 7  |-  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  e.  CC  /\  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  e.  CC )  ->  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  / 
2 )  x.  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  ( 2  x.  2 ) ) )
2315, 19, 22syl2anc 665 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
2413, 17mulcld 9614 . . . . . . . . 9  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  e.  CC )
25243adant1 1023 . . . . . . . 8  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC )
26253ad2ant1 1026 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC )
27 divdiv1 10269 . . . . . . . 8  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
2820, 20, 27mp3an23 1352 . . . . . . 7  |-  ( ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  e.  CC  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
2926, 28syl 17 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
( 2  x.  2 ) ) )
3023, 29eqtr4d 2465 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 ) )
31 nnre 10567 . . . . . . . . . . . . 13  |-  ( C  e.  NN  ->  C  e.  RR )
32 nnre 10567 . . . . . . . . . . . . 13  |-  ( B  e.  NN  ->  B  e.  RR )
33 readdcl 9573 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
3431, 32, 33syl2anr 480 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  RR )
35343adant1 1023 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
36353ad2ant1 1026 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
3731adantl 467 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
3832adantr 466 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
39 nngt0 10589 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  0  <  C )
4039adantl 467 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
41 nngt0 10589 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  0  <  B )
4241adantr 466 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
4337, 38, 40, 42addgt0d 10139 . . . . . . . . . . . . 13  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  +  B ) )
44 0re 9594 . . . . . . . . . . . . . 14  |-  0  e.  RR
45 ltle 9673 . . . . . . . . . . . . . 14  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
4644, 45mpan 674 . . . . . . . . . . . . 13  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
4734, 43, 46sylc 62 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B ) )
48473adant1 1023 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B
) )
49483ad2ant1 1026 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
50 resqrtth 13263 . . . . . . . . . 10  |-  ( ( ( C  +  B
)  e.  RR  /\  0  <_  ( C  +  B ) )  -> 
( ( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
5136, 49, 50syl2anc 665 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
52 resubcl 9889 . . . . . . . . . . . . 13  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
5331, 32, 52syl2anr 480 . . . . . . . . . . . 12  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  RR )
54533adant1 1023 . . . . . . . . . . 11  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
55543ad2ant1 1026 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
56 pythagtriplem10 14713 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
57563adant3 1025 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
58 ltle 9673 . . . . . . . . . . . 12  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
5944, 58mpan 674 . . . . . . . . . . 11  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
6055, 57, 59sylc 62 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
61 resqrtth 13263 . . . . . . . . . 10  |-  ( ( ( C  -  B
)  e.  RR  /\  0  <_  ( C  -  B ) )  -> 
( ( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
6255, 60, 61syl2anc 665 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
6351, 62oveq12d 6267 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( ( sqr `  ( C  -  B
) ) ^ 2 ) )  =  ( ( C  +  B
)  -  ( C  -  B ) ) )
6463oveq1d 6264 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  /  2 )  =  ( ( ( C  +  B )  -  ( C  -  B
) )  /  2
) )
65 simp12 1036 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
66 simp13 1037 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
6765, 66, 8syl2anc 665 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
6865, 66, 11syl2anc 665 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
69 subsq 12332 . . . . . . . . 9  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  =  ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ) )
7067, 68, 69syl2anc 665 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( ( sqr `  ( C  -  B
) ) ^ 2 ) )  =  ( ( ( sqr `  ( C  +  B )
)  +  ( sqr `  ( C  -  B
) ) )  x.  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ) )
7170oveq1d 6264 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( ( sqr `  ( C  -  B ) ) ^ 2 ) )  /  2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 ) )
72 pnncan 9866 . . . . . . . . . . . . . 14  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  B  e.  CC )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( B  +  B ) )
73723anidm23 1323 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( B  +  B ) )
74 2times 10679 . . . . . . . . . . . . . 14  |-  ( B  e.  CC  ->  (
2  x.  B )  =  ( B  +  B ) )
7574adantl 467 . . . . . . . . . . . . 13  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  B
)  =  ( B  +  B ) )
7673, 75eqtr4d 2465 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( 2  x.  B ) )
774, 5, 76syl2anr 480 . . . . . . . . . . 11  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( C  +  B )  -  ( C  -  B )
)  =  ( 2  x.  B ) )
78773adant1 1023 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( 2  x.  B ) )
79783ad2ant1 1026 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  -  ( C  -  B ) )  =  ( 2  x.  B ) )
8079oveq1d 6264 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  -  ( C  -  B )
)  /  2 )  =  ( ( 2  x.  B )  / 
2 ) )
81 2cn 10631 . . . . . . . . . 10  |-  2  e.  CC
82 2ne0 10653 . . . . . . . . . 10  |-  2  =/=  0
83 divcan3 10245 . . . . . . . . . 10  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  B
)  /  2 )  =  B )
8481, 82, 83mp3an23 1352 . . . . . . . . 9  |-  ( B  e.  CC  ->  (
( 2  x.  B
)  /  2 )  =  B )
8565, 5, 843syl 18 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  B
)  /  2 )  =  B )
8680, 85eqtrd 2462 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  -  ( C  -  B )
)  /  2 )  =  B )
8764, 71, 863eqtr3d 2470 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  x.  ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) )  / 
2 )  =  B )
8887oveq1d 6264 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  +  ( sqr `  ( C  -  B )
) )  x.  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) )  /  2 )  / 
2 )  =  ( B  /  2 ) )
8930, 88eqtrd 2462 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  +  ( sqr `  ( C  -  B ) ) )  /  2 )  x.  ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) )  =  ( B  /  2 ) )
903, 89syl5eq 2474 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( M  x.  N )  =  ( B  / 
2 ) )
9190oveq2d 6265 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( M  x.  N ) )  =  ( 2  x.  ( B  /  2
) ) )
92 divcan2 10229 . . . . . 6  |-  ( ( B  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
2  x.  ( B  /  2 ) )  =  B )
9381, 82, 92mp3an23 1352 . . . . 5  |-  ( B  e.  CC  ->  (
2  x.  ( B  /  2 ) )  =  B )
945, 93syl 17 . . . 4  |-  ( B  e.  NN  ->  (
2  x.  ( B  /  2 ) )  =  B )
95943ad2ant2 1027 . . 3  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
2  x.  ( B  /  2 ) )  =  B )
96953ad2ant1 1026 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( B  /  2 ) )  =  B )
9791, 96eqtr2d 2463 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  =  ( 2  x.  ( M  x.  N
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 370    /\ w3a 982    = wceq 1437    e. wcel 1872    =/= wne 2599   class class class wbr 4366   ` cfv 5544  (class class class)co 6249   CCcc 9488   RRcr 9489   0cc0 9490   1c1 9491    + caddc 9493    x. cmul 9495    < clt 9626    <_ cle 9627    - cmin 9811    / cdiv 10220   NNcn 10560   2c2 10610   ^cexp 12222   sqrcsqrt 13240    || cdvds 14248    gcd cgcd 14411
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1663  ax-4 1676  ax-5 1752  ax-6 1798  ax-7 1843  ax-8 1874  ax-9 1876  ax-10 1891  ax-11 1896  ax-12 1909  ax-13 2063  ax-ext 2408  ax-sep 4489  ax-nul 4498  ax-pow 4545  ax-pr 4603  ax-un 6541  ax-cnex 9546  ax-resscn 9547  ax-1cn 9548  ax-icn 9549  ax-addcl 9550  ax-addrcl 9551  ax-mulcl 9552  ax-mulrcl 9553  ax-mulcom 9554  ax-addass 9555  ax-mulass 9556  ax-distr 9557  ax-i2m1 9558  ax-1ne0 9559  ax-1rid 9560  ax-rnegex 9561  ax-rrecex 9562  ax-cnre 9563  ax-pre-lttri 9564  ax-pre-lttrn 9565  ax-pre-ltadd 9566  ax-pre-mulgt0 9567  ax-pre-sup 9568
This theorem depends on definitions:  df-bi 188  df-or 371  df-an 372  df-3or 983  df-3an 984  df-tru 1440  df-ex 1658  df-nf 1662  df-sb 1791  df-eu 2280  df-mo 2281  df-clab 2415  df-cleq 2421  df-clel 2424  df-nfc 2558  df-ne 2601  df-nel 2602  df-ral 2719  df-rex 2720  df-reu 2721  df-rmo 2722  df-rab 2723  df-v 3024  df-sbc 3243  df-csb 3339  df-dif 3382  df-un 3384  df-in 3386  df-ss 3393  df-pss 3395  df-nul 3705  df-if 3855  df-pw 3926  df-sn 3942  df-pr 3944  df-tp 3946  df-op 3948  df-uni 4163  df-iun 4244  df-br 4367  df-opab 4426  df-mpt 4427  df-tr 4462  df-eprel 4707  df-id 4711  df-po 4717  df-so 4718  df-fr 4755  df-we 4757  df-xp 4802  df-rel 4803  df-cnv 4804  df-co 4805  df-dm 4806  df-rn 4807  df-res 4808  df-ima 4809  df-pred 5342  df-ord 5388  df-on 5389  df-lim 5390  df-suc 5391  df-iota 5508  df-fun 5546  df-fn 5547  df-f 5548  df-f1 5549  df-fo 5550  df-f1o 5551  df-fv 5552  df-riota 6211  df-ov 6252  df-oprab 6253  df-mpt2 6254  df-om 6651  df-2nd 6752  df-wrecs 6983  df-recs 7045  df-rdg 7083  df-er 7318  df-en 7525  df-dom 7526  df-sdom 7527  df-sup 7909  df-pnf 9628  df-mnf 9629  df-xr 9630  df-ltxr 9631  df-le 9632  df-sub 9813  df-neg 9814  df-div 10221  df-nn 10561  df-2 10619  df-3 10620  df-n0 10821  df-z 10889  df-uz 11111  df-rp 11254  df-seq 12164  df-exp 12223  df-cj 13106  df-re 13107  df-im 13108  df-sqrt 13242  df-abs 13243
This theorem is referenced by:  pythagtriplem18  14725
  Copyright terms: Public domain W3C validator