MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pythagtriplem14 Structured version   Unicode version

Theorem pythagtriplem14 13891
Description: Lemma for pythagtrip 13897. Calculate the square of  N. (Contributed by Scott Fenton, 17-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Hypothesis
Ref Expression
pythagtriplem13.1  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
Assertion
Ref Expression
pythagtriplem14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )

Proof of Theorem pythagtriplem14
StepHypRef Expression
1 pythagtriplem13.1 . . 3  |-  N  =  ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 )
21oveq1i 6100 . 2  |-  ( N ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) )  /  2
) ^ 2 )
3 nncn 10326 . . . . . . . . 9  |-  ( C  e.  NN  ->  C  e.  CC )
4 nncn 10326 . . . . . . . . 9  |-  ( B  e.  NN  ->  B  e.  CC )
5 addcl 9360 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  +  B
)  e.  CC )
63, 4, 5syl2anr 475 . . . . . . . 8  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  CC )
76sqrcld 12919 . . . . . . 7  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B )
)  e.  CC )
8 subcl 9605 . . . . . . . . 9  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( C  -  B
)  e.  CC )
93, 4, 8syl2anr 475 . . . . . . . 8  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  CC )
109sqrcld 12919 . . . . . . 7  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B )
)  e.  CC )
117, 10subcld 9715 . . . . . 6  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
12113adant1 1001 . . . . 5  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
13123ad2ant1 1004 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC )
14 2cn 10388 . . . . 5  |-  2  e.  CC
15 2ne0 10410 . . . . 5  |-  2  =/=  0
16 sqdiv 11927 . . . . 5  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) ) )
1714, 15, 16mp3an23 1301 . . . 4  |-  ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  e.  CC  ->  ( (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) )  / 
2 ) ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2 ^ 2 ) ) )
1813, 17syl 16 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) ) )
1914sqvali 11941 . . . . 5  |-  ( 2 ^ 2 )  =  ( 2  x.  2 )
2019oveq2i 6101 . . . 4  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2 ^ 2 ) )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) )
2113sqcld 12002 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  e.  CC )
22 2cnne0 10532 . . . . . . 7  |-  ( 2  e.  CC  /\  2  =/=  0 )
23 divdiv1 10038 . . . . . . 7  |-  ( ( ( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  e.  CC  /\  ( 2  e.  CC  /\  2  =/=  0 )  /\  (
2  e.  CC  /\  2  =/=  0 ) )  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  2
)  /  2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) ) )
2422, 22, 23mp3an23 1301 . . . . . 6  |-  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  e.  CC  ->  ( ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  2
)  /  2 )  =  ( ( ( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  /  (
2  x.  2 ) ) )
2521, 24syl 16 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  ( 2  x.  2 ) ) )
26 simp12 1014 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  NN )
27 simp13 1015 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  NN )
2826, 27, 7syl2anc 656 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
2926, 27, 10syl2anc 656 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
30 binom2sub 11979 . . . . . . . . . 10  |-  ( ( ( sqr `  ( C  +  B )
)  e.  CC  /\  ( sqr `  ( C  -  B ) )  e.  CC )  -> 
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  =  ( ( ( ( sqr `  ( C  +  B ) ) ^ 2 )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  +  ( ( sqr `  ( C  -  B ) ) ^ 2 ) ) )
3128, 29, 30syl2anc 656 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( ( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) ) )
32 nnre 10325 . . . . . . . . . . . . . . 15  |-  ( C  e.  NN  ->  C  e.  RR )
33 nnre 10325 . . . . . . . . . . . . . . 15  |-  ( B  e.  NN  ->  B  e.  RR )
34 readdcl 9361 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  +  B
)  e.  RR )
3532, 33, 34syl2anr 475 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B
)  e.  RR )
36353adant1 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  +  B )  e.  RR )
37363ad2ant1 1004 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  RR )
3837recnd 9408 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  +  B )  e.  CC )
39 resubcl 9669 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  RR  /\  B  e.  RR )  ->  ( C  -  B
)  e.  RR )
4032, 33, 39syl2anr 475 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B
)  e.  RR )
41403adant1 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  B )  e.  RR )
42413ad2ant1 1004 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  RR )
4342recnd 9408 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  B )  e.  CC )
4473adant1 1001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  +  B ) )  e.  CC )
45103adant1 1001 . . . . . . . . . . . . . 14  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( sqr `  ( C  -  B ) )  e.  CC )
4644, 45mulcld 9402 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )
47 mulcl 9362 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  e.  CC )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
4814, 46, 47sylancr 658 . . . . . . . . . . . 12  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
49483ad2ant1 1004 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  e.  CC )
5038, 43, 49addsubd 9736 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( ( C  +  B )  -  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) ) )  +  ( C  -  B ) ) )
5127nncnd 10334 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  C  e.  CC )
52 simp11 1013 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  NN )
5352nncnd 10334 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  CC )
54 subdi 9774 . . . . . . . . . . . . 13  |-  ( ( 2  e.  CC  /\  C  e.  CC  /\  A  e.  CC )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
5514, 54mp3an1 1296 . . . . . . . . . . . 12  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( 2  x.  ( C  -  A )
)  =  ( ( 2  x.  C )  -  ( 2  x.  A ) ) )
5651, 53, 55syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( 2  x.  C )  -  ( 2  x.  A
) ) )
57 ppncan 9647 . . . . . . . . . . . . . . . . 17  |-  ( ( C  e.  CC  /\  B  e.  CC  /\  C  e.  CC )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( C  +  C ) )
58573anidm13 1271 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( C  +  C ) )
59 2times 10436 . . . . . . . . . . . . . . . . 17  |-  ( C  e.  CC  ->  (
2  x.  C )  =  ( C  +  C ) )
6059adantr 462 . . . . . . . . . . . . . . . 16  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( 2  x.  C
)  =  ( C  +  C ) )
6158, 60eqtr4d 2476 . . . . . . . . . . . . . . 15  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
623, 4, 61syl2anr 475 . . . . . . . . . . . . . 14  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  ( ( C  +  B )  +  ( C  -  B ) )  =  ( 2  x.  C ) )
63623adant1 1001 . . . . . . . . . . . . 13  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
64633ad2ant1 1004 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  +  ( C  -  B ) )  =  ( 2  x.  C ) )
6526nncnd 10334 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  B  e.  CC )
66 subsq 11969 . . . . . . . . . . . . . . . . . 18  |-  ( ( C  e.  CC  /\  B  e.  CC )  ->  ( ( C ^
2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
6751, 65, 66syl2anc 656 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( ( C  +  B )  x.  ( C  -  B
) ) )
68 oveq1 6097 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( A ^ 2 )  +  ( B ^ 2 ) )  =  ( C ^
2 )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
69683ad2ant2 1005 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( ( C ^ 2 )  -  ( B ^ 2 ) ) )
70 nncn 10326 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( A  e.  NN  ->  A  e.  CC )
7170sqcld 12002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( A  e.  NN  ->  ( A ^ 2 )  e.  CC )
72713ad2ant1 1004 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( A ^ 2 )  e.  CC )
734sqcld 12002 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  NN  ->  ( B ^ 2 )  e.  CC )
74733ad2ant2 1005 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( B ^ 2 )  e.  CC )
7572, 74pncand 9716 . . . . . . . . . . . . . . . . . . 19  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
76753ad2ant1 1004 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( A ^
2 )  +  ( B ^ 2 ) )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7769, 76eqtr3d 2475 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C ^ 2 )  -  ( B ^ 2 ) )  =  ( A ^
2 ) )
7867, 77eqtr3d 2475 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( C  +  B
)  x.  ( C  -  B ) )  =  ( A ^
2 ) )
7978fveq2d 5692 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( sqr `  ( A ^ 2 ) ) )
8032adantl 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  C  e.  RR )
8133adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  B  e.  RR )
82 nngt0 10347 . . . . . . . . . . . . . . . . . . . . 21  |-  ( C  e.  NN  ->  0  <  C )
8382adantl 463 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  C )
84 nngt0 10347 . . . . . . . . . . . . . . . . . . . . 21  |-  ( B  e.  NN  ->  0  <  B )
8584adantr 462 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  B )
8680, 81, 83, 85addgt0d 9910 . . . . . . . . . . . . . . . . . . 19  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <  ( C  +  B ) )
87 0re 9382 . . . . . . . . . . . . . . . . . . . 20  |-  0  e.  RR
88 ltle 9459 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( 0  e.  RR  /\  ( C  +  B
)  e.  RR )  ->  ( 0  < 
( C  +  B
)  ->  0  <_  ( C  +  B ) ) )
8987, 88mpan 665 . . . . . . . . . . . . . . . . . . 19  |-  ( ( C  +  B )  e.  RR  ->  (
0  <  ( C  +  B )  ->  0  <_  ( C  +  B
) ) )
9035, 86, 89sylc 60 . . . . . . . . . . . . . . . . . 18  |-  ( ( B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B ) )
91903adant1 1001 . . . . . . . . . . . . . . . . 17  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  ( C  +  B
) )
92913ad2ant1 1004 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  +  B
) )
93 pythagtriplem10 13883 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 ) )  ->  0  <  ( C  -  B )
)
94933adant3 1003 . . . . . . . . . . . . . . . . 17  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <  ( C  -  B
) )
95 ltle 9459 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  ( C  -  B
)  e.  RR )  ->  ( 0  < 
( C  -  B
)  ->  0  <_  ( C  -  B ) ) )
9687, 95mpan 665 . . . . . . . . . . . . . . . . 17  |-  ( ( C  -  B )  e.  RR  ->  (
0  <  ( C  -  B )  ->  0  <_  ( C  -  B
) ) )
9742, 94, 96sylc 60 . . . . . . . . . . . . . . . 16  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  ( C  -  B
) )
9837, 92, 42, 97sqrmuld 12907 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( ( C  +  B )  x.  ( C  -  B
) ) )  =  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) )
9979, 98eqtr3d 2475 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( A ^
2 ) )  =  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) )
100 nnre 10325 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  A  e.  RR )
1011003ad2ant1 1004 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  A  e.  RR )
1021013ad2ant1 1004 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  A  e.  RR )
103 nnnn0 10582 . . . . . . . . . . . . . . . . . 18  |-  ( A  e.  NN  ->  A  e.  NN0 )
104103nn0ge0d 10635 . . . . . . . . . . . . . . . . 17  |-  ( A  e.  NN  ->  0  <_  A )
1051043ad2ant1 1004 . . . . . . . . . . . . . . . 16  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  0  <_  A )
1061053ad2ant1 1004 . . . . . . . . . . . . . . 15  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  0  <_  A )
107102, 106sqrsqd 12902 . . . . . . . . . . . . . 14  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( sqr `  ( A ^
2 ) )  =  A )
10899, 107eqtr3d 2475 . . . . . . . . . . . . 13  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) )  =  A )
109108oveq2d 6106 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( ( sqr `  ( C  +  B ) )  x.  ( sqr `  ( C  -  B )
) ) )  =  ( 2  x.  A
) )
11064, 109oveq12d 6108 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  =  ( ( 2  x.  C
)  -  ( 2  x.  A ) ) )
11156, 110eqtr4d 2476 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
2  x.  ( C  -  A ) )  =  ( ( ( C  +  B )  +  ( C  -  B ) )  -  ( 2  x.  (
( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
112 resqrth 12741 . . . . . . . . . . . . 13  |-  ( ( ( C  +  B
)  e.  RR  /\  0  <_  ( C  +  B ) )  -> 
( ( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
11337, 92, 112syl2anc 656 . . . . . . . . . . . 12  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  +  B )
) ^ 2 )  =  ( C  +  B ) )
114113oveq1d 6105 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) )  =  ( ( C  +  B )  -  ( 2  x.  ( ( sqr `  ( C  +  B )
)  x.  ( sqr `  ( C  -  B
) ) ) ) ) )
115 resqrth 12741 . . . . . . . . . . . 12  |-  ( ( ( C  -  B
)  e.  RR  /\  0  <_  ( C  -  B ) )  -> 
( ( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
11642, 97, 115syl2anc 656 . . . . . . . . . . 11  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( sqr `  ( C  -  B )
) ^ 2 )  =  ( C  -  B ) )
117114, 116oveq12d 6108 . . . . . . . . . 10  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( ( ( C  +  B
)  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( C  -  B ) ) )
11850, 111, 1173eqtr4rd 2484 . . . . . . . . 9  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) ) ^ 2 )  -  ( 2  x.  ( ( sqr `  ( C  +  B
) )  x.  ( sqr `  ( C  -  B ) ) ) ) )  +  ( ( sqr `  ( C  -  B )
) ^ 2 ) )  =  ( 2  x.  ( C  -  A ) ) )
11931, 118eqtrd 2473 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( sqr `  ( C  +  B )
)  -  ( sqr `  ( C  -  B
) ) ) ^
2 )  =  ( 2  x.  ( C  -  A ) ) )
120119oveq1d 6105 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( ( 2  x.  ( C  -  A )
)  /  2 ) )
121 subcl 9605 . . . . . . . . . . 11  |-  ( ( C  e.  CC  /\  A  e.  CC )  ->  ( C  -  A
)  e.  CC )
1223, 70, 121syl2anr 475 . . . . . . . . . 10  |-  ( ( A  e.  NN  /\  C  e.  NN )  ->  ( C  -  A
)  e.  CC )
1231223adant2 1002 . . . . . . . . 9  |-  ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  ->  ( C  -  A )  e.  CC )
1241233ad2ant1 1004 . . . . . . . 8  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( C  -  A )  e.  CC )
125 divcan3 10014 . . . . . . . . 9  |-  ( ( ( C  -  A
)  e.  CC  /\  2  e.  CC  /\  2  =/=  0 )  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
12614, 15, 125mp3an23 1301 . . . . . . . 8  |-  ( ( C  -  A )  e.  CC  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
127124, 126syl 16 . . . . . . 7  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( 2  x.  ( C  -  A )
)  /  2 )  =  ( C  -  A ) )
128120, 127eqtrd 2473 . . . . . 6  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
2 )  =  ( C  -  A ) )
129128oveq1d 6105 . . . . 5  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( ( sqr `  ( C  +  B ) )  -  ( sqr `  ( C  -  B )
) ) ^ 2 )  /  2 )  /  2 )  =  ( ( C  -  A )  /  2
) )
13025, 129eqtr3d 2475 . . . 4  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2  x.  2 ) )  =  ( ( C  -  A
)  /  2 ) )
13120, 130syl5eq 2485 . . 3  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) ) ^ 2 )  / 
( 2 ^ 2 ) )  =  ( ( C  -  A
)  /  2 ) )
13218, 131eqtrd 2473 . 2  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  (
( ( ( sqr `  ( C  +  B
) )  -  ( sqr `  ( C  -  B ) ) )  /  2 ) ^
2 )  =  ( ( C  -  A
)  /  2 ) )
1332, 132syl5eq 2485 1  |-  ( ( ( A  e.  NN  /\  B  e.  NN  /\  C  e.  NN )  /\  ( ( A ^
2 )  +  ( B ^ 2 ) )  =  ( C ^ 2 )  /\  ( ( A  gcd  B )  =  1  /\ 
-.  2  ||  A
) )  ->  ( N ^ 2 )  =  ( ( C  -  A )  /  2
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    /\ w3a 960    = wceq 1364    e. wcel 1761    =/= wne 2604   class class class wbr 4289   ` cfv 5415  (class class class)co 6090   CCcc 9276   RRcr 9277   0cc0 9278   1c1 9279    + caddc 9281    x. cmul 9283    < clt 9414    <_ cle 9415    - cmin 9591    / cdiv 9989   NNcn 10318   2c2 10367   ^cexp 11861   sqrcsqr 12718    || cdivides 13531    gcd cgcd 13686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355  ax-pre-sup 9356
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-om 6476  df-2nd 6577  df-recs 6828  df-rdg 6862  df-er 7097  df-en 7307  df-dom 7308  df-sdom 7309  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-div 9990  df-nn 10319  df-2 10376  df-3 10377  df-n0 10576  df-z 10643  df-uz 10858  df-rp 10988  df-seq 11803  df-exp 11862  df-cj 12584  df-re 12585  df-im 12586  df-sqr 12720  df-abs 12721
This theorem is referenced by:  pythagtriplem15  13892  pythagtriplem17  13894
  Copyright terms: Public domain W3C validator