MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Unicode version

Theorem pwxpndom2 9041
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )

Proof of Theorem pwxpndom2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 9040 . 2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
2 reldom 7520 . . . . . . 7  |-  Rel  ~<_
32brrelex2i 5027 . . . . . 6  |-  ( om  ~<_  A  ->  A  e.  _V )
4 oveq1 6284 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ^m  1o )  =  ( A  ^m  1o ) )
5 id 22 . . . . . . . 8  |-  ( x  =  A  ->  x  =  A )
64, 5breq12d 4446 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ^m  1o )  ~~  x  <->  ( A  ^m  1o )  ~~  A
) )
7 df1o2 7140 . . . . . . . . 9  |-  1o  =  { (/) }
87oveq2i 6288 . . . . . . . 8  |-  ( x  ^m  1o )  =  ( x  ^m  { (/)
} )
9 vex 3096 . . . . . . . . 9  |-  x  e. 
_V
10 0ex 4563 . . . . . . . . 9  |-  (/)  e.  _V
119, 10mapsnen 7591 . . . . . . . 8  |-  ( x  ^m  { (/) } ) 
~~  x
128, 11eqbrtri 4452 . . . . . . 7  |-  ( x  ^m  1o )  ~~  x
136, 12vtoclg 3151 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  1o )  ~~  A )
14 ensym 7562 . . . . . 6  |-  ( ( A  ^m  1o ) 
~~  A  ->  A  ~~  ( A  ^m  1o ) )
153, 13, 143syl 20 . . . . 5  |-  ( om  ~<_  A  ->  A  ~~  ( A  ^m  1o ) )
16 map2xp 7685 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  2o )  ~~  ( A  X.  A
) )
17 ensym 7562 . . . . . 6  |-  ( ( A  ^m  2o ) 
~~  ( A  X.  A )  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
183, 16, 173syl 20 . . . . 5  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
19 elmapi 7438 . . . . . . . . . . 11  |-  ( x  e.  ( A  ^m  1o )  ->  x : 1o --> A )
20 fdm 5721 . . . . . . . . . . 11  |-  ( x : 1o --> A  ->  dom  x  =  1o )
2119, 20syl 16 . . . . . . . . . 10  |-  ( x  e.  ( A  ^m  1o )  ->  dom  x  =  1o )
2221adantr 465 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  1o )
23 1onn 7286 . . . . . . . . . . . . . 14  |-  1o  e.  om
2423elexi 3103 . . . . . . . . . . . . 13  |-  1o  e.  _V
2524sucid 4943 . . . . . . . . . . . 12  |-  1o  e.  suc  1o
26 df-2o 7129 . . . . . . . . . . . 12  |-  2o  =  suc  1o
2725, 26eleqtrri 2528 . . . . . . . . . . 11  |-  1o  e.  2o
28 1on 7135 . . . . . . . . . . . 12  |-  1o  e.  On
2928onirri 4970 . . . . . . . . . . 11  |-  -.  1o  e.  1o
30 nelneq2 2559 . . . . . . . . . . 11  |-  ( ( 1o  e.  2o  /\  -.  1o  e.  1o )  ->  -.  2o  =  1o )
3127, 29, 30mp2an 672 . . . . . . . . . 10  |-  -.  2o  =  1o
32 elmapi 7438 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  ^m  2o )  ->  x : 2o --> A )
33 fdm 5721 . . . . . . . . . . . . 13  |-  ( x : 2o --> A  ->  dom  x  =  2o )
3432, 33syl 16 . . . . . . . . . . . 12  |-  ( x  e.  ( A  ^m  2o )  ->  dom  x  =  2o )
3534adantl 466 . . . . . . . . . . 11  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  2o )
3635eqeq1d 2443 . . . . . . . . . 10  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  -> 
( dom  x  =  1o 
<->  2o  =  1o ) )
3731, 36mtbiri 303 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  -.  dom  x  =  1o )
3822, 37pm2.65i 173 . . . . . . . 8  |-  -.  (
x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )
39 elin 3669 . . . . . . . 8  |-  ( x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  <->  ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) ) )
4038, 39mtbir 299 . . . . . . 7  |-  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )
4140a1i 11 . . . . . 6  |-  ( om  ~<_  A  ->  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) ) )
4241eq0rdv 3802 . . . . 5  |-  ( om  ~<_  A  ->  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )
43 cdaenun 8552 . . . . 5  |-  ( ( A  ~~  ( A  ^m  1o )  /\  ( A  X.  A
)  ~~  ( A  ^m  2o )  /\  (
( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
4415, 18, 42, 43syl3anc 1227 . . . 4  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
45 omex 8058 . . . . . 6  |-  om  e.  _V
46 ovex 6305 . . . . . 6  |-  ( A  ^m  n )  e. 
_V
4745, 46iunex 6761 . . . . 5  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
48 oveq2 6285 . . . . . . . 8  |-  ( n  =  1o  ->  ( A  ^m  n )  =  ( A  ^m  1o ) )
4948ssiun2s 4355 . . . . . . 7  |-  ( 1o  e.  om  ->  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5023, 49ax-mp 5 . . . . . 6  |-  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n )
51 2onn 7287 . . . . . . 7  |-  2o  e.  om
52 oveq2 6285 . . . . . . . 8  |-  ( n  =  2o  ->  ( A  ^m  n )  =  ( A  ^m  2o ) )
5352ssiun2s 4355 . . . . . . 7  |-  ( 2o  e.  om  ->  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5451, 53ax-mp 5 . . . . . 6  |-  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n )
5550, 54unssi 3661 . . . . 5  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )
56 ssdomg 7559 . . . . 5  |-  ( U_ n  e.  om  ( A  ^m  n )  e. 
_V  ->  ( ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )  ->  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
5747, 55, 56mp2 9 . . . 4  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n )
58 endomtr 7571 . . . 4  |-  ( ( ( A  +c  ( A  X.  A ) ) 
~~  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  /\  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
5944, 57, 58sylancl 662 . . 3  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
60 domtr 7566 . . . 4  |-  ( ( ~P A  ~<_  ( A  +c  ( A  X.  A ) )  /\  ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) )
6160expcom 435 . . 3  |-  ( ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
)  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
6259, 61syl 16 . 2  |-  ( om  ~<_  A  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
631, 62mtod 177 1  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 369    = wceq 1381    e. wcel 1802   _Vcvv 3093    u. cun 3456    i^i cin 3457    C_ wss 3458   (/)c0 3767   ~Pcpw 3993   {csn 4010   U_ciun 4311   class class class wbr 4433   suc csuc 4866    X. cxp 4983   dom cdm 4985   -->wf 5570  (class class class)co 6277   omcom 6681   1oc1o 7121   2oc2o 7122    ^m cmap 7418    ~~ cen 7511    ~<_ cdom 7512    +c ccda 8545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1603  ax-4 1616  ax-5 1689  ax-6 1732  ax-7 1774  ax-8 1804  ax-9 1806  ax-10 1821  ax-11 1826  ax-12 1838  ax-13 1983  ax-ext 2419  ax-rep 4544  ax-sep 4554  ax-nul 4562  ax-pow 4611  ax-pr 4672  ax-un 6573  ax-inf2 8056
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 973  df-3an 974  df-tru 1384  df-fal 1387  df-ex 1598  df-nf 1602  df-sb 1725  df-eu 2270  df-mo 2271  df-clab 2427  df-cleq 2433  df-clel 2436  df-nfc 2591  df-ne 2638  df-ral 2796  df-rex 2797  df-reu 2798  df-rmo 2799  df-rab 2800  df-v 3095  df-sbc 3312  df-csb 3418  df-dif 3461  df-un 3463  df-in 3465  df-ss 3472  df-pss 3474  df-nul 3768  df-if 3923  df-pw 3995  df-sn 4011  df-pr 4013  df-tp 4015  df-op 4017  df-uni 4231  df-int 4268  df-iun 4313  df-br 4434  df-opab 4492  df-mpt 4493  df-tr 4527  df-eprel 4777  df-id 4781  df-po 4786  df-so 4787  df-fr 4824  df-se 4825  df-we 4826  df-ord 4867  df-on 4868  df-lim 4869  df-suc 4870  df-xp 4991  df-rel 4992  df-cnv 4993  df-co 4994  df-dm 4995  df-rn 4996  df-res 4997  df-ima 4998  df-iota 5537  df-fun 5576  df-fn 5577  df-f 5578  df-f1 5579  df-fo 5580  df-f1o 5581  df-fv 5582  df-isom 5583  df-riota 6238  df-ov 6280  df-oprab 6281  df-mpt2 6282  df-om 6682  df-1st 6781  df-2nd 6782  df-supp 6900  df-recs 7040  df-rdg 7074  df-seqom 7111  df-1o 7128  df-2o 7129  df-oadd 7132  df-omul 7133  df-oexp 7134  df-er 7309  df-map 7420  df-en 7515  df-dom 7516  df-sdom 7517  df-fin 7518  df-fsupp 7828  df-oi 7933  df-har 7982  df-cnf 8077  df-card 8318  df-cda 8546
This theorem is referenced by:  pwxpndom  9042  pwcdandom  9043
  Copyright terms: Public domain W3C validator