MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwxpndom2 Structured version   Visualization version   Unicode version

Theorem pwxpndom2 9108
Description: The powerset of a Dedekind-infinite set does not inject into its Cartesian product with itself. (Contributed by Mario Carneiro, 31-May-2015.)
Assertion
Ref Expression
pwxpndom2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )

Proof of Theorem pwxpndom2
Dummy variables  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwfseq 9107 . 2  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n ) )
2 reldom 7593 . . . . . . 7  |-  Rel  ~<_
32brrelex2i 4881 . . . . . 6  |-  ( om  ~<_  A  ->  A  e.  _V )
4 oveq1 6315 . . . . . . . 8  |-  ( x  =  A  ->  (
x  ^m  1o )  =  ( A  ^m  1o ) )
5 id 22 . . . . . . . 8  |-  ( x  =  A  ->  x  =  A )
64, 5breq12d 4408 . . . . . . 7  |-  ( x  =  A  ->  (
( x  ^m  1o )  ~~  x  <->  ( A  ^m  1o )  ~~  A
) )
7 df1o2 7212 . . . . . . . . 9  |-  1o  =  { (/) }
87oveq2i 6319 . . . . . . . 8  |-  ( x  ^m  1o )  =  ( x  ^m  { (/)
} )
9 vex 3034 . . . . . . . . 9  |-  x  e. 
_V
10 0ex 4528 . . . . . . . . 9  |-  (/)  e.  _V
119, 10mapsnen 7665 . . . . . . . 8  |-  ( x  ^m  { (/) } ) 
~~  x
128, 11eqbrtri 4415 . . . . . . 7  |-  ( x  ^m  1o )  ~~  x
136, 12vtoclg 3093 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  1o )  ~~  A )
14 ensym 7636 . . . . . 6  |-  ( ( A  ^m  1o ) 
~~  A  ->  A  ~~  ( A  ^m  1o ) )
153, 13, 143syl 18 . . . . 5  |-  ( om  ~<_  A  ->  A  ~~  ( A  ^m  1o ) )
16 map2xp 7760 . . . . . 6  |-  ( A  e.  _V  ->  ( A  ^m  2o )  ~~  ( A  X.  A
) )
17 ensym 7636 . . . . . 6  |-  ( ( A  ^m  2o ) 
~~  ( A  X.  A )  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
183, 16, 173syl 18 . . . . 5  |-  ( om  ~<_  A  ->  ( A  X.  A )  ~~  ( A  ^m  2o ) )
19 elmapi 7511 . . . . . . . . . . 11  |-  ( x  e.  ( A  ^m  1o )  ->  x : 1o --> A )
20 fdm 5745 . . . . . . . . . . 11  |-  ( x : 1o --> A  ->  dom  x  =  1o )
2119, 20syl 17 . . . . . . . . . 10  |-  ( x  e.  ( A  ^m  1o )  ->  dom  x  =  1o )
2221adantr 472 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  1o )
23 1onn 7358 . . . . . . . . . . . . . 14  |-  1o  e.  om
2423elexi 3041 . . . . . . . . . . . . 13  |-  1o  e.  _V
2524sucid 5509 . . . . . . . . . . . 12  |-  1o  e.  suc  1o
26 df-2o 7201 . . . . . . . . . . . 12  |-  2o  =  suc  1o
2725, 26eleqtrri 2548 . . . . . . . . . . 11  |-  1o  e.  2o
28 1on 7207 . . . . . . . . . . . 12  |-  1o  e.  On
2928onirri 5536 . . . . . . . . . . 11  |-  -.  1o  e.  1o
30 nelneq2 2574 . . . . . . . . . . 11  |-  ( ( 1o  e.  2o  /\  -.  1o  e.  1o )  ->  -.  2o  =  1o )
3127, 29, 30mp2an 686 . . . . . . . . . 10  |-  -.  2o  =  1o
32 elmapi 7511 . . . . . . . . . . . . 13  |-  ( x  e.  ( A  ^m  2o )  ->  x : 2o --> A )
33 fdm 5745 . . . . . . . . . . . . 13  |-  ( x : 2o --> A  ->  dom  x  =  2o )
3432, 33syl 17 . . . . . . . . . . . 12  |-  ( x  e.  ( A  ^m  2o )  ->  dom  x  =  2o )
3534adantl 473 . . . . . . . . . . 11  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  dom  x  =  2o )
3635eqeq1d 2473 . . . . . . . . . 10  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  -> 
( dom  x  =  1o 
<->  2o  =  1o ) )
3731, 36mtbiri 310 . . . . . . . . 9  |-  ( ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )  ->  -.  dom  x  =  1o )
3822, 37pm2.65i 178 . . . . . . . 8  |-  -.  (
x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) )
39 elin 3608 . . . . . . . 8  |-  ( x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  <->  ( x  e.  ( A  ^m  1o )  /\  x  e.  ( A  ^m  2o ) ) )
4038, 39mtbir 306 . . . . . . 7  |-  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )
4140a1i 11 . . . . . 6  |-  ( om  ~<_  A  ->  -.  x  e.  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) ) )
4241eq0rdv 3773 . . . . 5  |-  ( om  ~<_  A  ->  ( ( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )
43 cdaenun 8622 . . . . 5  |-  ( ( A  ~~  ( A  ^m  1o )  /\  ( A  X.  A
)  ~~  ( A  ^m  2o )  /\  (
( A  ^m  1o )  i^i  ( A  ^m  2o ) )  =  (/) )  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
4415, 18, 42, 43syl3anc 1292 . . . 4  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~~  (
( A  ^m  1o )  u.  ( A  ^m  2o ) ) )
45 omex 8166 . . . . . 6  |-  om  e.  _V
46 ovex 6336 . . . . . 6  |-  ( A  ^m  n )  e. 
_V
4745, 46iunex 6792 . . . . 5  |-  U_ n  e.  om  ( A  ^m  n )  e.  _V
48 oveq2 6316 . . . . . . . 8  |-  ( n  =  1o  ->  ( A  ^m  n )  =  ( A  ^m  1o ) )
4948ssiun2s 4313 . . . . . . 7  |-  ( 1o  e.  om  ->  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5023, 49ax-mp 5 . . . . . 6  |-  ( A  ^m  1o )  C_  U_ n  e.  om  ( A  ^m  n )
51 2onn 7359 . . . . . . 7  |-  2o  e.  om
52 oveq2 6316 . . . . . . . 8  |-  ( n  =  2o  ->  ( A  ^m  n )  =  ( A  ^m  2o ) )
5352ssiun2s 4313 . . . . . . 7  |-  ( 2o  e.  om  ->  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n ) )
5451, 53ax-mp 5 . . . . . 6  |-  ( A  ^m  2o )  C_  U_ n  e.  om  ( A  ^m  n )
5550, 54unssi 3600 . . . . 5  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )
56 ssdomg 7633 . . . . 5  |-  ( U_ n  e.  om  ( A  ^m  n )  e. 
_V  ->  ( ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  C_  U_ n  e.  om  ( A  ^m  n )  ->  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) ) )
5747, 55, 56mp2 9 . . . 4  |-  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n )
58 endomtr 7645 . . . 4  |-  ( ( ( A  +c  ( A  X.  A ) ) 
~~  ( ( A  ^m  1o )  u.  ( A  ^m  2o ) )  /\  (
( A  ^m  1o )  u.  ( A  ^m  2o ) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
5944, 57, 58sylancl 675 . . 3  |-  ( om  ~<_  A  ->  ( A  +c  ( A  X.  A
) )  ~<_  U_ n  e.  om  ( A  ^m  n ) )
60 domtr 7640 . . . 4  |-  ( ( ~P A  ~<_  ( A  +c  ( A  X.  A ) )  /\  ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) )
6160expcom 442 . . 3  |-  ( ( A  +c  ( A  X.  A ) )  ~<_ 
U_ n  e.  om  ( A  ^m  n
)  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
6259, 61syl 17 . 2  |-  ( om  ~<_  A  ->  ( ~P A  ~<_  ( A  +c  ( A  X.  A
) )  ->  ~P A  ~<_  U_ n  e.  om  ( A  ^m  n
) ) )
631, 62mtod 182 1  |-  ( om  ~<_  A  ->  -.  ~P A  ~<_  ( A  +c  ( A  X.  A ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 376    = wceq 1452    e. wcel 1904   _Vcvv 3031    u. cun 3388    i^i cin 3389    C_ wss 3390   (/)c0 3722   ~Pcpw 3942   {csn 3959   U_ciun 4269   class class class wbr 4395    X. cxp 4837   dom cdm 4839   suc csuc 5432   -->wf 5585  (class class class)co 6308   omcom 6711   1oc1o 7193   2oc2o 7194    ^m cmap 7490    ~~ cen 7584    ~<_ cdom 7585    +c ccda 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-8 1906  ax-9 1913  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451  ax-rep 4508  ax-sep 4518  ax-nul 4527  ax-pow 4579  ax-pr 4639  ax-un 6602  ax-inf2 8164
This theorem depends on definitions:  df-bi 190  df-or 377  df-an 378  df-3or 1008  df-3an 1009  df-tru 1455  df-fal 1458  df-ex 1672  df-nf 1676  df-sb 1806  df-eu 2323  df-mo 2324  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-ne 2643  df-ral 2761  df-rex 2762  df-reu 2763  df-rmo 2764  df-rab 2765  df-v 3033  df-sbc 3256  df-csb 3350  df-dif 3393  df-un 3395  df-in 3397  df-ss 3404  df-pss 3406  df-nul 3723  df-if 3873  df-pw 3944  df-sn 3960  df-pr 3962  df-tp 3964  df-op 3966  df-uni 4191  df-int 4227  df-iun 4271  df-br 4396  df-opab 4455  df-mpt 4456  df-tr 4491  df-eprel 4750  df-id 4754  df-po 4760  df-so 4761  df-fr 4798  df-se 4799  df-we 4800  df-xp 4845  df-rel 4846  df-cnv 4847  df-co 4848  df-dm 4849  df-rn 4850  df-res 4851  df-ima 4852  df-pred 5387  df-ord 5433  df-on 5434  df-lim 5435  df-suc 5436  df-iota 5553  df-fun 5591  df-fn 5592  df-f 5593  df-f1 5594  df-fo 5595  df-f1o 5596  df-fv 5597  df-isom 5598  df-riota 6270  df-ov 6311  df-oprab 6312  df-mpt2 6313  df-om 6712  df-1st 6812  df-2nd 6813  df-supp 6934  df-wrecs 7046  df-recs 7108  df-rdg 7146  df-seqom 7183  df-1o 7200  df-2o 7201  df-oadd 7204  df-omul 7205  df-oexp 7206  df-er 7381  df-map 7492  df-en 7588  df-dom 7589  df-sdom 7590  df-fin 7591  df-fsupp 7902  df-oi 8043  df-har 8091  df-cnf 8185  df-card 8391  df-cda 8616
This theorem is referenced by:  pwxpndom  9109  pwcdandom  9110
  Copyright terms: Public domain W3C validator