Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwv Structured version   Visualization version   Unicode version

Theorem pwv 4189
 Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3438 . . . 4
2 selpw 3949 . . . 4
31, 2mpbir 214 . . 3
4 vex 3034 . . 3
53, 42th 247 . 2
65eqriv 2468 1
 Colors of variables: wff setvar class Syntax hints:   wceq 1452   wcel 1904  cvv 3031   wss 3390  cpw 3942 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1677  ax-4 1690  ax-5 1766  ax-6 1813  ax-7 1859  ax-10 1932  ax-11 1937  ax-12 1950  ax-13 2104  ax-ext 2451 This theorem depends on definitions:  df-bi 190  df-an 378  df-tru 1455  df-ex 1672  df-nf 1676  df-sb 1806  df-clab 2458  df-cleq 2464  df-clel 2467  df-nfc 2601  df-v 3033  df-in 3397  df-ss 3404  df-pw 3944 This theorem is referenced by:  univ  4651  ncanth  6268
 Copyright terms: Public domain W3C validator