MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwundif Structured version   Unicode version

Theorem pwundif 4739
Description: Break up the power class of a union into a union of smaller classes. (Contributed by NM, 25-Mar-2007.) (Proof shortened by Thierry Arnoux, 20-Dec-2016.)
Assertion
Ref Expression
pwundif  |-  ~P ( A  u.  B )  =  ( ( ~P ( A  u.  B
)  \  ~P A
)  u.  ~P A
)

Proof of Theorem pwundif
StepHypRef Expression
1 undif1 3865 . 2  |-  ( ( ~P ( A  u.  B )  \  ~P A )  u.  ~P A )  =  ( ~P ( A  u.  B )  u.  ~P A )
2 pwunss 4737 . . . . 5  |-  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
3 unss 3641 . . . . 5  |-  ( ( ~P A  C_  ~P ( A  u.  B
)  /\  ~P B  C_ 
~P ( A  u.  B ) )  <->  ( ~P A  u.  ~P B
)  C_  ~P ( A  u.  B )
)
42, 3mpbir 209 . . . 4  |-  ( ~P A  C_  ~P ( A  u.  B )  /\  ~P B  C_  ~P ( A  u.  B
) )
54simpli 458 . . 3  |-  ~P A  C_ 
~P ( A  u.  B )
6 ssequn2 3640 . . 3  |-  ( ~P A  C_  ~P ( A  u.  B )  <->  ( ~P ( A  u.  B )  u.  ~P A )  =  ~P ( A  u.  B
) )
75, 6mpbi 208 . 2  |-  ( ~P ( A  u.  B
)  u.  ~P A
)  =  ~P ( A  u.  B )
81, 7eqtr2i 2484 1  |-  ~P ( A  u.  B )  =  ( ( ~P ( A  u.  B
)  \  ~P A
)  u.  ~P A
)
Colors of variables: wff setvar class
Syntax hints:    /\ wa 369    = wceq 1370    \ cdif 3436    u. cun 3437    C_ wss 3439   ~Pcpw 3971
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1955  ax-ext 2432
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-clab 2440  df-cleq 2446  df-clel 2449  df-nfc 2604  df-ne 2650  df-ral 2804  df-rab 2808  df-v 3080  df-dif 3442  df-un 3444  df-in 3446  df-ss 3453  df-nul 3749  df-pw 3973
This theorem is referenced by:  pwfilem  7719
  Copyright terms: Public domain W3C validator