MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwssplit3 Structured version   Unicode version

Theorem pwssplit3 18027
Description: Splitting for structure powers, part 3: restriction is a module homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y  |-  Y  =  ( W  ^s  U )
pwssplit1.z  |-  Z  =  ( W  ^s  V )
pwssplit1.b  |-  B  =  ( Base `  Y
)
pwssplit1.c  |-  C  =  ( Base `  Z
)
pwssplit1.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
pwssplit3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Distinct variable groups:    x, Y    x, W    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem pwssplit3
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2  |-  B  =  ( Base `  Y
)
2 eqid 2402 . 2  |-  ( .s
`  Y )  =  ( .s `  Y
)
3 eqid 2402 . 2  |-  ( .s
`  Z )  =  ( .s `  Z
)
4 eqid 2402 . 2  |-  (Scalar `  Y )  =  (Scalar `  Y )
5 eqid 2402 . 2  |-  (Scalar `  Z )  =  (Scalar `  Z )
6 eqid 2402 . 2  |-  ( Base `  (Scalar `  Y )
)  =  ( Base `  (Scalar `  Y )
)
7 simp1 997 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  W  e.  LMod )
8 simp2 998 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
9 pwssplit1.y . . . 4  |-  Y  =  ( W  ^s  U )
109pwslmod 17936 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X )  ->  Y  e.  LMod )
117, 8, 10syl2anc 659 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  Y  e.  LMod )
12 simp3 999 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
138, 12ssexd 4541 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
14 pwssplit1.z . . . 4  |-  Z  =  ( W  ^s  V )
1514pwslmod 17936 . . 3  |-  ( ( W  e.  LMod  /\  V  e.  _V )  ->  Z  e.  LMod )
167, 13, 15syl2anc 659 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  Z  e.  LMod )
17 eqid 2402 . . . . 5  |-  (Scalar `  W )  =  (Scalar `  W )
1814, 17pwssca 15110 . . . 4  |-  ( ( W  e.  LMod  /\  V  e.  _V )  ->  (Scalar `  W )  =  (Scalar `  Z ) )
197, 13, 18syl2anc 659 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  W )  =  (Scalar `  Z ) )
209, 17pwssca 15110 . . . 4  |-  ( ( W  e.  LMod  /\  U  e.  X )  ->  (Scalar `  W )  =  (Scalar `  Y ) )
217, 8, 20syl2anc 659 . . 3  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  W )  =  (Scalar `  Y ) )
2219, 21eqtr3d 2445 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (Scalar `  Z )  =  (Scalar `  Y ) )
23 lmodgrp 17839 . . 3  |-  ( W  e.  LMod  ->  W  e. 
Grp )
24 pwssplit1.c . . . 4  |-  C  =  ( Base `  Z
)
25 pwssplit1.f . . . 4  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
269, 14, 1, 24, 25pwssplit2 18026 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
2723, 26syl3an1 1263 . 2  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
28 snex 4632 . . . . . . . 8  |-  { a }  e.  _V
29 xpexg 6584 . . . . . . . 8  |-  ( ( U  e.  X  /\  { a }  e.  _V )  ->  ( U  X.  { a } )  e.  _V )
308, 28, 29sylancl 660 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  ( U  X.  { a } )  e.  _V )
31 vex 3062 . . . . . . 7  |-  b  e. 
_V
32 offres 6779 . . . . . . 7  |-  ( ( ( U  X.  {
a } )  e. 
_V  /\  b  e.  _V )  ->  ( ( ( U  X.  {
a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s `  W
) ( b  |`  V ) ) )
3330, 31, 32sylancl 660 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
( ( U  X.  { a } )  oF ( .s
`  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
) )
3433adantr 463 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
) )
35 xpssres 5128 . . . . . . . 8  |-  ( V 
C_  U  ->  (
( U  X.  {
a } )  |`  V )  =  ( V  X.  { a } ) )
36353ad2ant3 1020 . . . . . . 7  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
( U  X.  {
a } )  |`  V )  =  ( V  X.  { a } ) )
3736adantr 463 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( U  X.  { a } )  |`  V )  =  ( V  X.  { a } ) )
3837oveq1d 6293 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  |`  V )  oF ( .s
`  W ) ( b  |`  V )
)  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( b  |`  V ) ) )
3934, 38eqtrd 2443 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( ( U  X.  { a } )  oF ( .s `  W ) b )  |`  V )  =  ( ( V  X.  { a } )  oF ( .s `  W ) ( b  |`  V ) ) )
40 eqid 2402 . . . . . 6  |-  ( .s
`  W )  =  ( .s `  W
)
41 eqid 2402 . . . . . 6  |-  ( Base `  (Scalar `  W )
)  =  ( Base `  (Scalar `  W )
)
42 simpl1 1000 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  W  e.  LMod )
43 simpl2 1001 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  U  e.  X )
4421fveq2d 5853 . . . . . . . . 9  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  ( Base `  (Scalar `  W
) )  =  (
Base `  (Scalar `  Y
) ) )
4544eleq2d 2472 . . . . . . . 8  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  (
a  e.  ( Base `  (Scalar `  W )
)  <->  a  e.  (
Base `  (Scalar `  Y
) ) ) )
4645biimpar 483 . . . . . . 7  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  ( Base `  (Scalar `  Y )
) )  ->  a  e.  ( Base `  (Scalar `  W ) ) )
4746adantrr 715 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
a  e.  ( Base `  (Scalar `  W )
) )
48 simprr 758 . . . . . 6  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
b  e.  B )
499, 1, 40, 2, 17, 41, 42, 43, 47, 48pwsvscafval 15108 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  =  ( ( U  X.  { a } )  oF ( .s `  W
) b ) )
5049reseq1d 5093 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( a ( .s `  Y ) b )  |`  V )  =  ( ( ( U  X.  { a } )  oF ( .s `  W
) b )  |`  V ) )
5125fvtresfn 5934 . . . . . 6  |-  ( b  e.  B  ->  ( F `  b )  =  ( b  |`  V ) )
5251ad2antll 727 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  b
)  =  ( b  |`  V ) )
5352oveq2d 6294 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( V  X.  { a } )  oF ( .s
`  W ) ( F `  b ) )  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( b  |`  V ) ) )
5439, 50, 533eqtr4d 2453 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( ( a ( .s `  Y ) b )  |`  V )  =  ( ( V  X.  { a } )  oF ( .s `  W ) ( F `  b
) ) )
551, 4, 2, 6lmodvscl 17849 . . . . . 6  |-  ( ( Y  e.  LMod  /\  a  e.  ( Base `  (Scalar `  Y ) )  /\  b  e.  B )  ->  ( a ( .s
`  Y ) b )  e.  B )
56553expb 1198 . . . . 5  |-  ( ( Y  e.  LMod  /\  (
a  e.  ( Base `  (Scalar `  Y )
)  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  e.  B )
5711, 56sylan 469 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Y ) b )  e.  B )
5825fvtresfn 5934 . . . 4  |-  ( ( a ( .s `  Y ) b )  e.  B  ->  ( F `  ( a
( .s `  Y
) b ) )  =  ( ( a ( .s `  Y
) b )  |`  V ) )
5957, 58syl 17 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  (
a ( .s `  Y ) b ) )  =  ( ( a ( .s `  Y ) b )  |`  V ) )
6013adantr 463 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  ->  V  e.  _V )
619, 14, 1, 24, 25pwssplit0 18024 . . . . . 6  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F : B --> C )
6261ffvelrnda 6009 . . . . 5  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  b  e.  B )  ->  ( F `  b
)  e.  C )
6362adantrl 714 . . . 4  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  b
)  e.  C )
6414, 24, 40, 3, 17, 41, 42, 60, 47, 63pwsvscafval 15108 . . 3  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( a ( .s
`  Z ) ( F `  b ) )  =  ( ( V  X.  { a } )  oF ( .s `  W
) ( F `  b ) ) )
6554, 59, 643eqtr4d 2453 . 2  |-  ( ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  (
Base `  (Scalar `  Y
) )  /\  b  e.  B ) )  -> 
( F `  (
a ( .s `  Y ) b ) )  =  ( a ( .s `  Z
) ( F `  b ) ) )
661, 2, 3, 4, 5, 6, 11, 16, 22, 27, 65islmhmd 18005 1  |-  ( ( W  e.  LMod  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y LMHom  Z ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   _Vcvv 3059    C_ wss 3414   {csn 3972    |-> cmpt 4453    X. cxp 4821    |` cres 4825   ` cfv 5569  (class class class)co 6278    oFcof 6519   Basecbs 14841  Scalarcsca 14912   .scvsca 14913    ^s cpws 15061   Grpcgrp 16377    GrpHom cghm 16588   LModclmod 17832   LMHom clmhm 17985
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-of 6521  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-fz 11727  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-sets 14847  df-plusg 14922  df-mulr 14923  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-hom 14933  df-cco 14934  df-0g 15056  df-prds 15062  df-pws 15064  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382  df-ghm 16589  df-mgp 17462  df-ur 17474  df-ring 17520  df-lmod 17834  df-lmhm 17988
This theorem is referenced by:  frlmsplit2  19099  pwssplit4  35397  pwslnmlem2  35401
  Copyright terms: Public domain W3C validator