Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwssplit2 Unicode version

Theorem pwssplit2 27057
Description: Splitting for structure powers, part 2: restriction is a group homomorphism. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypotheses
Ref Expression
pwssplit1.y  |-  Y  =  ( W  ^s  U )
pwssplit1.z  |-  Z  =  ( W  ^s  V )
pwssplit1.b  |-  B  =  ( Base `  Y
)
pwssplit1.c  |-  C  =  ( Base `  Z
)
pwssplit1.f  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
Assertion
Ref Expression
pwssplit2  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
Distinct variable groups:    x, Y    x, W    x, U    x, Z    x, V    x, B    x, C    x, X
Allowed substitution hint:    F( x)

Proof of Theorem pwssplit2
Dummy variables  a 
b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwssplit1.b . 2  |-  B  =  ( Base `  Y
)
2 pwssplit1.c . 2  |-  C  =  ( Base `  Z
)
3 eqid 2404 . 2  |-  ( +g  `  Y )  =  ( +g  `  Y )
4 eqid 2404 . 2  |-  ( +g  `  Z )  =  ( +g  `  Z )
5 simp1 957 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  W  e.  Grp )
6 simp2 958 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  U  e.  X )
7 pwssplit1.y . . . 4  |-  Y  =  ( W  ^s  U )
87pwsgrp 14884 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X )  ->  Y  e.  Grp )
95, 6, 8syl2anc 643 . 2  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  Y  e.  Grp )
10 simp3 959 . . . 4  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  V  C_  U )
116, 10ssexd 4310 . . 3  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  V  e.  _V )
12 pwssplit1.z . . . 4  |-  Z  =  ( W  ^s  V )
1312pwsgrp 14884 . . 3  |-  ( ( W  e.  Grp  /\  V  e.  _V )  ->  Z  e.  Grp )
145, 11, 13syl2anc 643 . 2  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  Z  e.  Grp )
15 pwssplit1.f . . 3  |-  F  =  ( x  e.  B  |->  ( x  |`  V ) )
167, 12, 1, 2, 15pwssplit0 27055 . 2  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  F : B --> C )
17 offres 6278 . . . . 5  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( a  o F ( +g  `  W
) b )  |`  V )  =  ( ( a  |`  V )  o F ( +g  `  W ) ( b  |`  V ) ) )
1817adantl 453 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( a  o F ( +g  `  W
) b )  |`  V )  =  ( ( a  |`  V )  o F ( +g  `  W ) ( b  |`  V ) ) )
195adantr 452 . . . . . 6  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  W  e.  Grp )
20 simpl2 961 . . . . . 6  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  U  e.  X )
21 simprl 733 . . . . . 6  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  a  e.  B )
22 simprr 734 . . . . . 6  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  b  e.  B )
23 eqid 2404 . . . . . 6  |-  ( +g  `  W )  =  ( +g  `  W )
247, 1, 19, 20, 21, 22, 23, 3pwsplusgval 13667 . . . . 5  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  Y
) b )  =  ( a  o F ( +g  `  W
) b ) )
2524reseq1d 5104 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( a ( +g  `  Y ) b )  |`  V )  =  ( ( a  o F ( +g  `  W
) b )  |`  V ) )
2615fvtresfn 26634 . . . . . 6  |-  ( a  e.  B  ->  ( F `  a )  =  ( a  |`  V ) )
2715fvtresfn 26634 . . . . . 6  |-  ( b  e.  B  ->  ( F `  b )  =  ( b  |`  V ) )
2826, 27oveqan12d 6059 . . . . 5  |-  ( ( a  e.  B  /\  b  e.  B )  ->  ( ( F `  a )  o F ( +g  `  W
) ( F `  b ) )  =  ( ( a  |`  V )  o F ( +g  `  W
) ( b  |`  V ) ) )
2928adantl 453 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( F `  a
)  o F ( +g  `  W ) ( F `  b
) )  =  ( ( a  |`  V )  o F ( +g  `  W ) ( b  |`  V ) ) )
3018, 25, 293eqtr4d 2446 . . 3  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( a ( +g  `  Y ) b )  |`  V )  =  ( ( F `  a
)  o F ( +g  `  W ) ( F `  b
) ) )
311, 3grpcl 14773 . . . . . 6  |-  ( ( Y  e.  Grp  /\  a  e.  B  /\  b  e.  B )  ->  ( a ( +g  `  Y ) b )  e.  B )
32313expb 1154 . . . . 5  |-  ( ( Y  e.  Grp  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  Y
) b )  e.  B )
339, 32sylan 458 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
a ( +g  `  Y
) b )  e.  B )
3415fvtresfn 26634 . . . 4  |-  ( ( a ( +g  `  Y
) b )  e.  B  ->  ( F `  ( a ( +g  `  Y ) b ) )  =  ( ( a ( +g  `  Y
) b )  |`  V ) )
3533, 34syl 16 . . 3  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( a ( +g  `  Y ) b )  |`  V ) )
3611adantr 452 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  V  e.  _V )
3716ffvelrnda 5829 . . . . 5  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  a  e.  B )  ->  ( F `  a
)  e.  C )
3837adantrr 698 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( F `  a )  e.  C )
3916ffvelrnda 5829 . . . . 5  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  b  e.  B )  ->  ( F `  b
)  e.  C )
4039adantrl 697 . . . 4  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( F `  b )  e.  C )
4112, 2, 19, 36, 38, 40, 23, 4pwsplusgval 13667 . . 3  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  (
( F `  a
) ( +g  `  Z
) ( F `  b ) )  =  ( ( F `  a )  o F ( +g  `  W
) ( F `  b ) ) )
4230, 35, 413eqtr4d 2446 . 2  |-  ( ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  /\  ( a  e.  B  /\  b  e.  B
) )  ->  ( F `  ( a
( +g  `  Y ) b ) )  =  ( ( F `  a ) ( +g  `  Z ) ( F `
 b ) ) )
431, 2, 3, 4, 9, 14, 16, 42isghmd 14970 1  |-  ( ( W  e.  Grp  /\  U  e.  X  /\  V  C_  U )  ->  F  e.  ( Y  GrpHom  Z ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1721   _Vcvv 2916    C_ wss 3280    e. cmpt 4226    |` cres 4839   ` cfv 5413  (class class class)co 6040    o Fcof 6262   Basecbs 13424   +g cplusg 13484    ^s cpws 13625   Grpcgrp 14640    GrpHom cghm 14958
This theorem is referenced by:  pwssplit3  27058
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1662  ax-8 1683  ax-13 1723  ax-14 1725  ax-6 1740  ax-7 1745  ax-11 1757  ax-12 1946  ax-ext 2385  ax-rep 4280  ax-sep 4290  ax-nul 4298  ax-pow 4337  ax-pr 4363  ax-un 4660  ax-cnex 9002  ax-resscn 9003  ax-1cn 9004  ax-icn 9005  ax-addcl 9006  ax-addrcl 9007  ax-mulcl 9008  ax-mulrcl 9009  ax-mulcom 9010  ax-addass 9011  ax-mulass 9012  ax-distr 9013  ax-i2m1 9014  ax-1ne0 9015  ax-1rid 9016  ax-rnegex 9017  ax-rrecex 9018  ax-cnre 9019  ax-pre-lttri 9020  ax-pre-lttrn 9021  ax-pre-ltadd 9022  ax-pre-mulgt0 9023
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2258  df-mo 2259  df-clab 2391  df-cleq 2397  df-clel 2400  df-nfc 2529  df-ne 2569  df-nel 2570  df-ral 2671  df-rex 2672  df-reu 2673  df-rmo 2674  df-rab 2675  df-v 2918  df-sbc 3122  df-csb 3212  df-dif 3283  df-un 3285  df-in 3287  df-ss 3294  df-pss 3296  df-nul 3589  df-if 3700  df-pw 3761  df-sn 3780  df-pr 3781  df-tp 3782  df-op 3783  df-uni 3976  df-int 4011  df-iun 4055  df-br 4173  df-opab 4227  df-mpt 4228  df-tr 4263  df-eprel 4454  df-id 4458  df-po 4463  df-so 4464  df-fr 4501  df-we 4503  df-ord 4544  df-on 4545  df-lim 4546  df-suc 4547  df-om 4805  df-xp 4843  df-rel 4844  df-cnv 4845  df-co 4846  df-dm 4847  df-rn 4848  df-res 4849  df-ima 4850  df-iota 5377  df-fun 5415  df-fn 5416  df-f 5417  df-f1 5418  df-fo 5419  df-f1o 5420  df-fv 5421  df-ov 6043  df-oprab 6044  df-mpt2 6045  df-of 6264  df-1st 6308  df-2nd 6309  df-riota 6508  df-recs 6592  df-rdg 6627  df-1o 6683  df-oadd 6687  df-er 6864  df-map 6979  df-ixp 7023  df-en 7069  df-dom 7070  df-sdom 7071  df-fin 7072  df-sup 7404  df-pnf 9078  df-mnf 9079  df-xr 9080  df-ltxr 9081  df-le 9082  df-sub 9249  df-neg 9250  df-nn 9957  df-2 10014  df-3 10015  df-4 10016  df-5 10017  df-6 10018  df-7 10019  df-8 10020  df-9 10021  df-10 10022  df-n0 10178  df-z 10239  df-dec 10339  df-uz 10445  df-fz 11000  df-struct 13426  df-ndx 13427  df-slot 13428  df-base 13429  df-plusg 13497  df-mulr 13498  df-sca 13500  df-vsca 13501  df-tset 13503  df-ple 13504  df-ds 13506  df-hom 13508  df-cco 13509  df-prds 13626  df-pws 13628  df-0g 13682  df-mnd 14645  df-grp 14767  df-minusg 14768  df-ghm 14959
  Copyright terms: Public domain W3C validator