MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsplusgval Structured version   Unicode version

Theorem pwsplusgval 14411
Description: Value of addition in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y  |-  Y  =  ( R  ^s  I )
pwsplusgval.b  |-  B  =  ( Base `  Y
)
pwsplusgval.r  |-  ( ph  ->  R  e.  V )
pwsplusgval.i  |-  ( ph  ->  I  e.  W )
pwsplusgval.f  |-  ( ph  ->  F  e.  B )
pwsplusgval.g  |-  ( ph  ->  G  e.  B )
pwsplusgval.a  |-  .+  =  ( +g  `  R )
pwsplusgval.p  |-  .+b  =  ( +g  `  Y )
Assertion
Ref Expression
pwsplusgval  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  oF  .+  G
) )

Proof of Theorem pwsplusgval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2433 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2433 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 fvex 5689 . . . . 5  |-  (Scalar `  R )  e.  _V
43a1i 11 . . . 4  |-  ( ph  ->  (Scalar `  R )  e.  _V )
5 pwsplusgval.i . . . 4  |-  ( ph  ->  I  e.  W )
6 pwsplusgval.r . . . . 5  |-  ( ph  ->  R  e.  V )
7 fnconstg 5586 . . . . 5  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
86, 7syl 16 . . . 4  |-  ( ph  ->  ( I  X.  { R } )  Fn  I
)
9 pwsplusgval.f . . . . 5  |-  ( ph  ->  F  e.  B )
10 pwsplusgval.b . . . . . 6  |-  B  =  ( Base `  Y
)
11 pwsplusgval.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
12 eqid 2433 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1311, 12pwsval 14407 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
146, 5, 13syl2anc 654 . . . . . . 7  |-  ( ph  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1514fveq2d 5683 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1610, 15syl5eq 2477 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
179, 16eleqtrd 2509 . . . 4  |-  ( ph  ->  F  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
18 pwsplusgval.g . . . . 5  |-  ( ph  ->  G  e.  B )
1918, 16eleqtrd 2509 . . . 4  |-  ( ph  ->  G  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
20 eqid 2433 . . . 4  |-  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( +g  `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
211, 2, 4, 5, 8, 17, 19, 20prdsplusgval 14394 . . 3  |-  ( ph  ->  ( F ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
) ( +g  `  (
( I  X.  { R } ) `  x
) ) ( G `
 x ) ) ) )
22 fvconst2g 5918 . . . . . . . 8  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
236, 22sylan 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
2423fveq2d 5683 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( +g  `  ( ( I  X.  { R }
) `  x )
)  =  ( +g  `  R ) )
25 pwsplusgval.a . . . . . 6  |-  .+  =  ( +g  `  R )
2624, 25syl6eqr 2483 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( +g  `  ( ( I  X.  { R }
) `  x )
)  =  .+  )
2726oveqd 6097 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( F `  x
) ( +g  `  (
( I  X.  { R } ) `  x
) ) ( G `
 x ) )  =  ( ( F `
 x )  .+  ( G `  x ) ) )
2827mpteq2dva 4366 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( F `  x ) ( +g  `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `  x
)  .+  ( G `  x ) ) ) )
2921, 28eqtrd 2465 . 2  |-  ( ph  ->  ( F ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
)  .+  ( G `  x ) ) ) )
30 pwsplusgval.p . . . 4  |-  .+b  =  ( +g  `  Y )
3114fveq2d 5683 . . . 4  |-  ( ph  ->  ( +g  `  Y
)  =  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
3230, 31syl5eq 2477 . . 3  |-  ( ph  -> 
.+b  =  ( +g  `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
3332oveqd 6097 . 2  |-  ( ph  ->  ( F  .+b  G
)  =  ( F ( +g  `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) G ) )
34 fvex 5689 . . . 4  |-  ( F `
 x )  e. 
_V
3534a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
36 fvex 5689 . . . 4  |-  ( G `
 x )  e. 
_V
3736a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( G `  x )  e.  _V )
38 eqid 2433 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3911, 38, 10, 6, 5, 9pwselbas 14410 . . . 4  |-  ( ph  ->  F : I --> ( Base `  R ) )
4039feqmptd 5732 . . 3  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
4111, 38, 10, 6, 5, 18pwselbas 14410 . . . 4  |-  ( ph  ->  G : I --> ( Base `  R ) )
4241feqmptd 5732 . . 3  |-  ( ph  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
435, 35, 37, 40, 42offval2 6325 . 2  |-  ( ph  ->  ( F  oF  .+  G )  =  ( x  e.  I  |->  ( ( F `  x )  .+  ( G `  x )
) ) )
4429, 33, 433eqtr4d 2475 1  |-  ( ph  ->  ( F  .+b  G
)  =  ( F  oF  .+  G
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1362    e. wcel 1755   _Vcvv 2962   {csn 3865    e. cmpt 4338    X. cxp 4825    Fn wfn 5401   ` cfv 5406  (class class class)co 6080    oFcof 6307   Basecbs 14157   +g cplusg 14221  Scalarcsca 14224   X_scprds 14367    ^s cpws 14368
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1594  ax-4 1605  ax-5 1669  ax-6 1707  ax-7 1727  ax-8 1757  ax-9 1759  ax-10 1774  ax-11 1779  ax-12 1791  ax-13 1942  ax-ext 2414  ax-rep 4391  ax-sep 4401  ax-nul 4409  ax-pow 4458  ax-pr 4519  ax-un 6361  ax-cnex 9326  ax-resscn 9327  ax-1cn 9328  ax-icn 9329  ax-addcl 9330  ax-addrcl 9331  ax-mulcl 9332  ax-mulrcl 9333  ax-mulcom 9334  ax-addass 9335  ax-mulass 9336  ax-distr 9337  ax-i2m1 9338  ax-1ne0 9339  ax-1rid 9340  ax-rnegex 9341  ax-rrecex 9342  ax-cnre 9343  ax-pre-lttri 9344  ax-pre-lttrn 9345  ax-pre-ltadd 9346  ax-pre-mulgt0 9347
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 959  df-3an 960  df-tru 1365  df-ex 1590  df-nf 1593  df-sb 1700  df-eu 2258  df-mo 2259  df-clab 2420  df-cleq 2426  df-clel 2429  df-nfc 2558  df-ne 2598  df-nel 2599  df-ral 2710  df-rex 2711  df-reu 2712  df-rab 2714  df-v 2964  df-sbc 3176  df-csb 3277  df-dif 3319  df-un 3321  df-in 3323  df-ss 3330  df-pss 3332  df-nul 3626  df-if 3780  df-pw 3850  df-sn 3866  df-pr 3868  df-tp 3870  df-op 3872  df-uni 4080  df-int 4117  df-iun 4161  df-br 4281  df-opab 4339  df-mpt 4340  df-tr 4374  df-eprel 4619  df-id 4623  df-po 4628  df-so 4629  df-fr 4666  df-we 4668  df-ord 4709  df-on 4710  df-lim 4711  df-suc 4712  df-xp 4833  df-rel 4834  df-cnv 4835  df-co 4836  df-dm 4837  df-rn 4838  df-res 4839  df-ima 4840  df-iota 5369  df-fun 5408  df-fn 5409  df-f 5410  df-f1 5411  df-fo 5412  df-f1o 5413  df-fv 5414  df-riota 6039  df-ov 6083  df-oprab 6084  df-mpt2 6085  df-of 6309  df-om 6466  df-1st 6566  df-2nd 6567  df-recs 6818  df-rdg 6852  df-1o 6908  df-oadd 6912  df-er 7089  df-map 7204  df-ixp 7252  df-en 7299  df-dom 7300  df-sdom 7301  df-fin 7302  df-sup 7679  df-pnf 9408  df-mnf 9409  df-xr 9410  df-ltxr 9411  df-le 9412  df-sub 9585  df-neg 9586  df-nn 10311  df-2 10368  df-3 10369  df-4 10370  df-5 10371  df-6 10372  df-7 10373  df-8 10374  df-9 10375  df-10 10376  df-n0 10568  df-z 10635  df-dec 10744  df-uz 10850  df-fz 11425  df-struct 14159  df-ndx 14160  df-slot 14161  df-base 14162  df-plusg 14234  df-mulr 14235  df-sca 14237  df-vsca 14238  df-ip 14239  df-tset 14240  df-ple 14241  df-ds 14243  df-hom 14245  df-cco 14246  df-prds 14369  df-pws 14371
This theorem is referenced by:  pwsdiagmhm  15479  pwsco1mhm  15480  pwsco2mhm  15481  pwssub  15648  pwssplit2  17063  frlmplusgval  18033  evl1addd  21385  mpfaddcl  21394  mpfind  21396  pf1addcl  21404  ply1rem  21520
  Copyright terms: Public domain W3C validator