Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsn Structured version   Unicode version

Theorem pwsn 4185
 Description: The power set of a singleton. (Contributed by NM, 5-Jun-2006.)
Assertion
Ref Expression
pwsn

Proof of Theorem pwsn
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 sssn 4130 . . 3
21abbii 2536 . 2
3 df-pw 3957 . 2
4 dfpr2 3987 . 2
52, 3, 43eqtr4i 2441 1
 Colors of variables: wff setvar class Syntax hints:   wo 366   wceq 1405  cab 2387   wss 3414  c0 3738  cpw 3955  csn 3972  cpr 3974 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380 This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-v 3061  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-nul 3739  df-pw 3957  df-sn 3973  df-pr 3975 This theorem is referenced by:  pmtrsn  16868  topsn  19728  concompid  20224  usgra1v  24807  esumsnf  28511  cvmlift2lem9  29608
 Copyright terms: Public domain W3C validator