MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmulrval Structured version   Unicode version

Theorem pwsmulrval 14425
Description: Value of multiplication in a structure power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsplusgval.y  |-  Y  =  ( R  ^s  I )
pwsplusgval.b  |-  B  =  ( Base `  Y
)
pwsplusgval.r  |-  ( ph  ->  R  e.  V )
pwsplusgval.i  |-  ( ph  ->  I  e.  W )
pwsplusgval.f  |-  ( ph  ->  F  e.  B )
pwsplusgval.g  |-  ( ph  ->  G  e.  B )
pwsmulrval.a  |-  .x.  =  ( .r `  R )
pwsmulrval.p  |-  .xb  =  ( .r `  Y )
Assertion
Ref Expression
pwsmulrval  |-  ( ph  ->  ( F  .xb  G
)  =  ( F  oF  .x.  G
) )

Proof of Theorem pwsmulrval
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 eqid 2441 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2441 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 fvex 5698 . . . . 5  |-  (Scalar `  R )  e.  _V
43a1i 11 . . . 4  |-  ( ph  ->  (Scalar `  R )  e.  _V )
5 pwsplusgval.i . . . 4  |-  ( ph  ->  I  e.  W )
6 pwsplusgval.r . . . . 5  |-  ( ph  ->  R  e.  V )
7 fnconstg 5595 . . . . 5  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
86, 7syl 16 . . . 4  |-  ( ph  ->  ( I  X.  { R } )  Fn  I
)
9 pwsplusgval.f . . . . 5  |-  ( ph  ->  F  e.  B )
10 pwsplusgval.b . . . . . 6  |-  B  =  ( Base `  Y
)
11 pwsplusgval.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
12 eqid 2441 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1311, 12pwsval 14420 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
146, 5, 13syl2anc 656 . . . . . . 7  |-  ( ph  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1514fveq2d 5692 . . . . . 6  |-  ( ph  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1610, 15syl5eq 2485 . . . . 5  |-  ( ph  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
179, 16eleqtrd 2517 . . . 4  |-  ( ph  ->  F  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
18 pwsplusgval.g . . . . 5  |-  ( ph  ->  G  e.  B )
1918, 16eleqtrd 2517 . . . 4  |-  ( ph  ->  G  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
20 eqid 2441 . . . 4  |-  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( .r `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
211, 2, 4, 5, 8, 17, 19, 20prdsmulrval 14409 . . 3  |-  ( ph  ->  ( F ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
) ( .r `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) ) ) )
22 fvconst2g 5928 . . . . . . . 8  |-  ( ( R  e.  V  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
236, 22sylan 468 . . . . . . 7  |-  ( (
ph  /\  x  e.  I )  ->  (
( I  X.  { R } ) `  x
)  =  R )
2423fveq2d 5692 . . . . . 6  |-  ( (
ph  /\  x  e.  I )  ->  ( .r `  ( ( I  X.  { R }
) `  x )
)  =  ( .r
`  R ) )
25 pwsmulrval.a . . . . . 6  |-  .x.  =  ( .r `  R )
2624, 25syl6eqr 2491 . . . . 5  |-  ( (
ph  /\  x  e.  I )  ->  ( .r `  ( ( I  X.  { R }
) `  x )
)  =  .x.  )
2726oveqd 6107 . . . 4  |-  ( (
ph  /\  x  e.  I )  ->  (
( F `  x
) ( .r `  ( ( I  X.  { R } ) `  x ) ) ( G `  x ) )  =  ( ( F `  x ) 
.x.  ( G `  x ) ) )
2827mpteq2dva 4375 . . 3  |-  ( ph  ->  ( x  e.  I  |->  ( ( F `  x ) ( .r
`  ( ( I  X.  { R }
) `  x )
) ( G `  x ) ) )  =  ( x  e.  I  |->  ( ( F `
 x )  .x.  ( G `  x ) ) ) )
2921, 28eqtrd 2473 . 2  |-  ( ph  ->  ( F ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) G )  =  ( x  e.  I  |->  ( ( F `  x
)  .x.  ( G `  x ) ) ) )
30 pwsmulrval.p . . . 4  |-  .xb  =  ( .r `  Y )
3114fveq2d 5692 . . . 4  |-  ( ph  ->  ( .r `  Y
)  =  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3230, 31syl5eq 2485 . . 3  |-  ( ph  -> 
.xb  =  ( .r
`  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3332oveqd 6107 . 2  |-  ( ph  ->  ( F  .xb  G
)  =  ( F ( .r `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) G ) )
34 fvex 5698 . . . 4  |-  ( F `
 x )  e. 
_V
3534a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( F `  x )  e.  _V )
36 fvex 5698 . . . 4  |-  ( G `
 x )  e. 
_V
3736a1i 11 . . 3  |-  ( (
ph  /\  x  e.  I )  ->  ( G `  x )  e.  _V )
38 eqid 2441 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3911, 38, 10, 6, 5, 9pwselbas 14423 . . . 4  |-  ( ph  ->  F : I --> ( Base `  R ) )
4039feqmptd 5741 . . 3  |-  ( ph  ->  F  =  ( x  e.  I  |->  ( F `
 x ) ) )
4111, 38, 10, 6, 5, 18pwselbas 14423 . . . 4  |-  ( ph  ->  G : I --> ( Base `  R ) )
4241feqmptd 5741 . . 3  |-  ( ph  ->  G  =  ( x  e.  I  |->  ( G `
 x ) ) )
435, 35, 37, 40, 42offval2 6335 . 2  |-  ( ph  ->  ( F  oF  .x.  G )  =  ( x  e.  I  |->  ( ( F `  x )  .x.  ( G `  x )
) ) )
4429, 33, 433eqtr4d 2483 1  |-  ( ph  ->  ( F  .xb  G
)  =  ( F  oF  .x.  G
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1364    e. wcel 1761   _Vcvv 2970   {csn 3874    e. cmpt 4347    X. cxp 4834    Fn wfn 5410   ` cfv 5415  (class class class)co 6090    oFcof 6317   Basecbs 14170   .rcmulr 14235  Scalarcsca 14237   X_scprds 14380    ^s cpws 14381
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-hom 14258  df-cco 14259  df-prds 14382  df-pws 14384
This theorem is referenced by:  mpfmulcl  17597  mpfind  17598  evl1muld  17746  pf1mulcl  17757  ply1rem  21594  fta1glem2  21597  fta1blem  21599  plypf1  21639
  Copyright terms: Public domain W3C validator