MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsmgp Structured version   Unicode version

Theorem pwsmgp 16816
Description: The multiplicative group of the power structure resembles the power of the multiplicative group. (Contributed by Mario Carneiro, 12-Mar-2015.)
Hypotheses
Ref Expression
pwsmgp.y  |-  Y  =  ( R  ^s  I )
pwsmgp.m  |-  M  =  (mulGrp `  R )
pwsmgp.z  |-  Z  =  ( M  ^s  I )
pwsmgp.n  |-  N  =  (mulGrp `  Y )
pwsmgp.b  |-  B  =  ( Base `  N
)
pwsmgp.c  |-  C  =  ( Base `  Z
)
pwsmgp.p  |-  .+  =  ( +g  `  N )
pwsmgp.q  |-  .+b  =  ( +g  `  Z )
Assertion
Ref Expression
pwsmgp  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  =  C  /\  .+  =  .+b  ) )

Proof of Theorem pwsmgp
StepHypRef Expression
1 eqid 2451 . . . . . 6  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 eqid 2451 . . . . . 6  |-  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  (mulGrp `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
3 eqid 2451 . . . . . 6  |-  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) )  =  ( (Scalar `  R ) X_s (mulGrp 
o.  ( I  X.  { R } ) ) )
4 simpr 461 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  I  e.  W )
5 fvex 5799 . . . . . . 7  |-  (Scalar `  R )  e.  _V
65a1i 11 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  R )  e.  _V )
7 fnconstg 5696 . . . . . . 7  |-  ( R  e.  V  ->  (
I  X.  { R } )  Fn  I
)
87adantr 465 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { R } )  Fn  I
)
91, 2, 3, 4, 6, 8prdsmgp 16808 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( ( Base `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )  /\  ( +g  `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) ) )
109simpld 459 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
11 pwsmgp.n . . . . . 6  |-  N  =  (mulGrp `  Y )
12 pwsmgp.y . . . . . . . 8  |-  Y  =  ( R  ^s  I )
13 eqid 2451 . . . . . . . 8  |-  (Scalar `  R )  =  (Scalar `  R )
1412, 13pwsval 14526 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1514fveq2d 5793 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (mulGrp `  Y )  =  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
1611, 15syl5eq 2504 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  N  =  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
1716fveq2d 5793 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  N
)  =  ( Base `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
18 pwsmgp.z . . . . . 6  |-  Z  =  ( M  ^s  I )
19 pwsmgp.m . . . . . . . . 9  |-  M  =  (mulGrp `  R )
20 fvex 5799 . . . . . . . . 9  |-  (mulGrp `  R )  e.  _V
2119, 20eqeltri 2535 . . . . . . . 8  |-  M  e. 
_V
22 eqid 2451 . . . . . . . . 9  |-  ( M  ^s  I )  =  ( M  ^s  I )
23 eqid 2451 . . . . . . . . 9  |-  (Scalar `  M )  =  (Scalar `  M )
2422, 23pwsval 14526 . . . . . . . 8  |-  ( ( M  e.  _V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  M ) X_s ( I  X.  { M } ) ) )
2521, 4, 24sylancr 663 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  M ) X_s ( I  X.  { M } ) ) )
2619, 13mgpsca 16703 . . . . . . . . . 10  |-  (Scalar `  R )  =  (Scalar `  M )
2726eqcomi 2464 . . . . . . . . 9  |-  (Scalar `  M )  =  (Scalar `  R )
2827a1i 11 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (Scalar `  M )  =  (Scalar `  R )
)
29 fnmgp 16698 . . . . . . . . . 10  |- mulGrp  Fn  _V
30 elex 3077 . . . . . . . . . . 11  |-  ( R  e.  V  ->  R  e.  _V )
3130adantr 465 . . . . . . . . . 10  |-  ( ( R  e.  V  /\  I  e.  W )  ->  R  e.  _V )
32 fcoconst 5979 . . . . . . . . . 10  |-  ( (mulGrp 
Fn  _V  /\  R  e. 
_V )  ->  (mulGrp  o.  ( I  X.  { R } ) )  =  ( I  X.  {
(mulGrp `  R ) } ) )
3329, 31, 32sylancr 663 . . . . . . . . 9  |-  ( ( R  e.  V  /\  I  e.  W )  ->  (mulGrp  o.  ( I  X.  { R } ) )  =  ( I  X.  { (mulGrp `  R ) } ) )
3419sneqi 3986 . . . . . . . . . 10  |-  { M }  =  { (mulGrp `  R ) }
3534xpeq2i 4959 . . . . . . . . 9  |-  ( I  X.  { M }
)  =  ( I  X.  { (mulGrp `  R ) } )
3633, 35syl6reqr 2511 . . . . . . . 8  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( I  X.  { M } )  =  (mulGrp 
o.  ( I  X.  { R } ) ) )
3728, 36oveq12d 6208 . . . . . . 7  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( (Scalar `  M
) X_s ( I  X.  { M } ) )  =  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
3825, 37eqtrd 2492 . . . . . 6  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( M  ^s  I )  =  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
3918, 38syl5eq 2504 . . . . 5  |-  ( ( R  e.  V  /\  I  e.  W )  ->  Z  =  ( (Scalar `  R ) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) )
4039fveq2d 5793 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  Z
)  =  ( Base `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4110, 17, 403eqtr4d 2502 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( Base `  N
)  =  ( Base `  Z ) )
42 pwsmgp.b . . 3  |-  B  =  ( Base `  N
)
43 pwsmgp.c . . 3  |-  C  =  ( Base `  Z
)
4441, 42, 433eqtr4g 2517 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  B  =  C )
459simprd 463 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  (mulGrp `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4616fveq2d 5793 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  N
)  =  ( +g  `  (mulGrp `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) ) )
4739fveq2d 5793 . . . 4  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  Z
)  =  ( +g  `  ( (Scalar `  R
) X_s (mulGrp  o.  ( I  X.  { R } ) ) ) ) )
4845, 46, 473eqtr4d 2502 . . 3  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( +g  `  N
)  =  ( +g  `  Z ) )
49 pwsmgp.p . . 3  |-  .+  =  ( +g  `  N )
50 pwsmgp.q . . 3  |-  .+b  =  ( +g  `  Z )
5148, 49, 503eqtr4g 2517 . 2  |-  ( ( R  e.  V  /\  I  e.  W )  ->  .+  =  .+b  )
5244, 51jca 532 1  |-  ( ( R  e.  V  /\  I  e.  W )  ->  ( B  =  C  /\  .+  =  .+b  ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 369    = wceq 1370    e. wcel 1758   _Vcvv 3068   {csn 3975    X. cxp 4936    o. ccom 4942    Fn wfn 5511   ` cfv 5516  (class class class)co 6190   Basecbs 14276   +g cplusg 14340  Scalarcsca 14343   X_scprds 14486    ^s cpws 14487  mulGrpcmgp 16696
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1592  ax-4 1603  ax-5 1671  ax-6 1710  ax-7 1730  ax-8 1760  ax-9 1762  ax-10 1777  ax-11 1782  ax-12 1794  ax-13 1952  ax-ext 2430  ax-rep 4501  ax-sep 4511  ax-nul 4519  ax-pow 4568  ax-pr 4629  ax-un 6472  ax-cnex 9439  ax-resscn 9440  ax-1cn 9441  ax-icn 9442  ax-addcl 9443  ax-addrcl 9444  ax-mulcl 9445  ax-mulrcl 9446  ax-mulcom 9447  ax-addass 9448  ax-mulass 9449  ax-distr 9450  ax-i2m1 9451  ax-1ne0 9452  ax-1rid 9453  ax-rnegex 9454  ax-rrecex 9455  ax-cnre 9456  ax-pre-lttri 9457  ax-pre-lttrn 9458  ax-pre-ltadd 9459  ax-pre-mulgt0 9460
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 966  df-3an 967  df-tru 1373  df-ex 1588  df-nf 1591  df-sb 1703  df-eu 2264  df-mo 2265  df-clab 2437  df-cleq 2443  df-clel 2446  df-nfc 2601  df-ne 2646  df-nel 2647  df-ral 2800  df-rex 2801  df-reu 2802  df-rab 2804  df-v 3070  df-sbc 3285  df-csb 3387  df-dif 3429  df-un 3431  df-in 3433  df-ss 3440  df-pss 3442  df-nul 3736  df-if 3890  df-pw 3960  df-sn 3976  df-pr 3978  df-tp 3980  df-op 3982  df-uni 4190  df-int 4227  df-iun 4271  df-br 4391  df-opab 4449  df-mpt 4450  df-tr 4484  df-eprel 4730  df-id 4734  df-po 4739  df-so 4740  df-fr 4777  df-we 4779  df-ord 4820  df-on 4821  df-lim 4822  df-suc 4823  df-xp 4944  df-rel 4945  df-cnv 4946  df-co 4947  df-dm 4948  df-rn 4949  df-res 4950  df-ima 4951  df-iota 5479  df-fun 5518  df-fn 5519  df-f 5520  df-f1 5521  df-fo 5522  df-f1o 5523  df-fv 5524  df-riota 6151  df-ov 6193  df-oprab 6194  df-mpt2 6195  df-om 6577  df-1st 6677  df-2nd 6678  df-recs 6932  df-rdg 6966  df-1o 7020  df-oadd 7024  df-er 7201  df-map 7316  df-ixp 7364  df-en 7411  df-dom 7412  df-sdom 7413  df-fin 7414  df-sup 7792  df-pnf 9521  df-mnf 9522  df-xr 9523  df-ltxr 9524  df-le 9525  df-sub 9698  df-neg 9699  df-nn 10424  df-2 10481  df-3 10482  df-4 10483  df-5 10484  df-6 10485  df-7 10486  df-8 10487  df-9 10488  df-10 10489  df-n0 10681  df-z 10748  df-dec 10857  df-uz 10963  df-fz 11539  df-struct 14278  df-ndx 14279  df-slot 14280  df-base 14281  df-sets 14282  df-plusg 14353  df-mulr 14354  df-sca 14356  df-vsca 14357  df-ip 14358  df-tset 14359  df-ple 14360  df-ds 14362  df-hom 14364  df-cco 14365  df-prds 14488  df-pws 14490  df-mgp 16697
This theorem is referenced by:  pwsco1rhm  16932  pwsco2rhm  16933  pwsdiagrhm  17004  evl1expd  17888
  Copyright terms: Public domain W3C validator