Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pwslnmlem2 Structured version   Unicode version

Theorem pwslnmlem2 29371
Description: A sum of powers is Noetherian. (Contributed by Stefan O'Rear, 25-Jan-2015.)
Hypotheses
Ref Expression
pwslnmlem2.a  |-  A  e. 
_V
pwslnmlem2.b  |-  B  e. 
_V
pwslnmlem2.x  |-  X  =  ( W  ^s  A )
pwslnmlem2.y  |-  Y  =  ( W  ^s  B )
pwslnmlem2.z  |-  Z  =  ( W  ^s  ( A  u.  B ) )
pwslnmlem2.w  |-  ( ph  ->  W  e.  LMod )
pwslnmlem2.dj  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
pwslnmlem2.xn  |-  ( ph  ->  X  e. LNoeM )
pwslnmlem2.yn  |-  ( ph  ->  Y  e. LNoeM )
Assertion
Ref Expression
pwslnmlem2  |-  ( ph  ->  Z  e. LNoeM )

Proof of Theorem pwslnmlem2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 pwslnmlem2.w . . 3  |-  ( ph  ->  W  e.  LMod )
2 pwslnmlem2.a . . . . 5  |-  A  e. 
_V
3 pwslnmlem2.b . . . . 5  |-  B  e. 
_V
42, 3unex 6377 . . . 4  |-  ( A  u.  B )  e. 
_V
54a1i 11 . . 3  |-  ( ph  ->  ( A  u.  B
)  e.  _V )
6 ssun1 3516 . . . 4  |-  A  C_  ( A  u.  B
)
76a1i 11 . . 3  |-  ( ph  ->  A  C_  ( A  u.  B ) )
8 pwslnmlem2.z . . . 4  |-  Z  =  ( W  ^s  ( A  u.  B ) )
9 pwslnmlem2.x . . . 4  |-  X  =  ( W  ^s  A )
10 eqid 2441 . . . 4  |-  ( Base `  Z )  =  (
Base `  Z )
11 eqid 2441 . . . 4  |-  ( Base `  X )  =  (
Base `  X )
12 eqid 2441 . . . 4  |-  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )
138, 9, 10, 11, 12pwssplit3 17120 . . 3  |-  ( ( W  e.  LMod  /\  ( A  u.  B )  e.  _V  /\  A  C_  ( A  u.  B
) )  ->  (
x  e.  ( Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom  X ) )
141, 5, 7, 13syl3anc 1213 . 2  |-  ( ph  ->  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom 
X ) )
15 fvex 5698 . . . . . 6  |-  ( 0g
`  X )  e. 
_V
1612mptiniseg 5329 . . . . . 6  |-  ( ( 0g `  X )  e.  _V  ->  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( 0g `  X ) } )
1715, 16ax-mp 5 . . . . 5  |-  ( `' ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  {
x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( 0g `  X ) }
18 lmodgrp 16935 . . . . . . . . . 10  |-  ( W  e.  LMod  ->  W  e. 
Grp )
19 grpmnd 15543 . . . . . . . . . 10  |-  ( W  e.  Grp  ->  W  e.  Mnd )
201, 18, 193syl 20 . . . . . . . . 9  |-  ( ph  ->  W  e.  Mnd )
21 eqid 2441 . . . . . . . . . 10  |-  ( 0g
`  W )  =  ( 0g `  W
)
229, 21pws0g 15453 . . . . . . . . 9  |-  ( ( W  e.  Mnd  /\  A  e.  _V )  ->  ( A  X.  {
( 0g `  W
) } )  =  ( 0g `  X
) )
2320, 2, 22sylancl 657 . . . . . . . 8  |-  ( ph  ->  ( A  X.  {
( 0g `  W
) } )  =  ( 0g `  X
) )
2423eqcomd 2446 . . . . . . 7  |-  ( ph  ->  ( 0g `  X
)  =  ( A  X.  { ( 0g
`  W ) } ) )
2524eqeq2d 2452 . . . . . 6  |-  ( ph  ->  ( ( x  |`  A )  =  ( 0g `  X )  <-> 
( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) ) )
2625rabbidv 2962 . . . . 5  |-  ( ph  ->  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( 0g `  X ) }  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
2717, 26syl5eq 2485 . . . 4  |-  ( ph  ->  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
2827oveq2d 6106 . . 3  |-  ( ph  ->  ( Zs  ( `' ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  =  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) )
29 pwslnmlem2.yn . . . 4  |-  ( ph  ->  Y  e. LNoeM )
30 pwslnmlem2.dj . . . . . 6  |-  ( ph  ->  ( A  i^i  B
)  =  (/) )
31 eqid 2441 . . . . . . 7  |-  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  =  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }
32 eqid 2441 . . . . . . 7  |-  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  =  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)
33 pwslnmlem2.y . . . . . . 7  |-  Y  =  ( W  ^s  B )
34 eqid 2441 . . . . . . 7  |-  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  =  ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )
358, 10, 21, 31, 32, 9, 33, 34pwssplit4 29367 . . . . . 6  |-  ( ( W  e.  LMod  /\  ( A  u.  B )  e.  _V  /\  ( A  i^i  B )  =  (/) )  ->  ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  e.  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y ) )
361, 5, 30, 35syl3anc 1213 . . . . 5  |-  ( ph  ->  ( y  e.  {
x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B ) )  e.  ( ( Zs  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y ) )
37 brlmici 17128 . . . . 5  |-  ( ( y  e.  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) }  |->  ( y  |`  B )
)  e.  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) LMIso 
Y )  ->  ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  ~=ph𝑚 
Y )
38 lnmlmic 29366 . . . . 5  |-  ( ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } ) 
~=ph𝑚  Y  ->  ( ( Zs  { x  e.  ( Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM  <->  Y  e. LNoeM ) )
3936, 37, 383syl 20 . . . 4  |-  ( ph  ->  ( ( Zs  { x  e.  ( Base `  Z
)  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM 
<->  Y  e. LNoeM ) )
4029, 39mpbird 232 . . 3  |-  ( ph  ->  ( Zs  { x  e.  (
Base `  Z )  |  ( x  |`  A )  =  ( A  X.  { ( 0g `  W ) } ) } )  e. LNoeM )
4128, 40eqeltrd 2515 . 2  |-  ( ph  ->  ( Zs  ( `' ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  e. LNoeM )
428, 9, 10, 11, 12pwssplit1 17118 . . . . . . 7  |-  ( ( W  e.  Mnd  /\  ( A  u.  B
)  e.  _V  /\  A  C_  ( A  u.  B ) )  -> 
( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z ) -onto-> ( Base `  X ) )
4320, 5, 7, 42syl3anc 1213 . . . . . 6  |-  ( ph  ->  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z ) -onto-> ( Base `  X ) )
44 forn 5620 . . . . . 6  |-  ( ( x  e.  ( Base `  Z )  |->  ( x  |`  A ) ) : ( Base `  Z
) -onto-> ( Base `  X
)  ->  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( Base `  X
) )
4543, 44syl 16 . . . . 5  |-  ( ph  ->  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) )  =  ( Base `  X
) )
4645oveq2d 6106 . . . 4  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  =  ( Xs  ( Base `  X ) ) )
47 pwslnmlem2.xn . . . . 5  |-  ( ph  ->  X  e. LNoeM )
4811ressid 14229 . . . . 5  |-  ( X  e. LNoeM  ->  ( Xs  ( Base `  X ) )  =  X )
4947, 48syl 16 . . . 4  |-  ( ph  ->  ( Xs  ( Base `  X
) )  =  X )
5046, 49eqtrd 2473 . . 3  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  =  X )
5150, 47eqeltrd 2515 . 2  |-  ( ph  ->  ( Xs  ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )  e. LNoeM )
52 eqid 2441 . . 3  |-  ( 0g
`  X )  =  ( 0g `  X
)
53 eqid 2441 . . 3  |-  ( `' ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )  =  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } )
54 eqid 2441 . . 3  |-  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  =  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )
55 eqid 2441 . . 3  |-  ( Xs  ran  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) )  =  ( Xs 
ran  ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) )
5652, 53, 54, 55lmhmlnmsplit 29365 . 2  |-  ( ( ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) )  e.  ( Z LMHom 
X )  /\  ( Zs  ( `' ( x  e.  ( Base `  Z
)  |->  ( x  |`  A ) ) " { ( 0g `  X ) } ) )  e. LNoeM  /\  ( Xs  ran  ( x  e.  (
Base `  Z )  |->  ( x  |`  A ) ) )  e. LNoeM )  ->  Z  e. LNoeM )
5714, 41, 51, 56syl3anc 1213 1  |-  ( ph  ->  Z  e. LNoeM )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 184    = wceq 1364    e. wcel 1761   {crab 2717   _Vcvv 2970    u. cun 3323    i^i cin 3324    C_ wss 3325   (/)c0 3634   {csn 3874   class class class wbr 4289    e. cmpt 4347    X. cxp 4834   `'ccnv 4835   ran crn 4837    |` cres 4838   "cima 4839   -onto->wfo 5413   ` cfv 5415  (class class class)co 6090   Basecbs 14170   ↾s cress 14171   0gc0g 14374    ^s cpws 14381   Mndcmnd 15405   Grpcgrp 15406   LModclmod 16928   LMHom clmhm 17078   LMIso clmim 17079    ~=ph𝑚 clmic 17080  LNoeMclnm 29353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1596  ax-4 1607  ax-5 1675  ax-6 1713  ax-7 1733  ax-8 1763  ax-9 1765  ax-10 1780  ax-11 1785  ax-12 1797  ax-13 1948  ax-ext 2422  ax-rep 4400  ax-sep 4410  ax-nul 4418  ax-pow 4467  ax-pr 4528  ax-un 6371  ax-cnex 9334  ax-resscn 9335  ax-1cn 9336  ax-icn 9337  ax-addcl 9338  ax-addrcl 9339  ax-mulcl 9340  ax-mulrcl 9341  ax-mulcom 9342  ax-addass 9343  ax-mulass 9344  ax-distr 9345  ax-i2m1 9346  ax-1ne0 9347  ax-1rid 9348  ax-rnegex 9349  ax-rrecex 9350  ax-cnre 9351  ax-pre-lttri 9352  ax-pre-lttrn 9353  ax-pre-ltadd 9354  ax-pre-mulgt0 9355
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 961  df-3an 962  df-tru 1367  df-ex 1592  df-nf 1595  df-sb 1706  df-eu 2261  df-mo 2262  df-clab 2428  df-cleq 2434  df-clel 2437  df-nfc 2566  df-ne 2606  df-nel 2607  df-ral 2718  df-rex 2719  df-reu 2720  df-rmo 2721  df-rab 2722  df-v 2972  df-sbc 3184  df-csb 3286  df-dif 3328  df-un 3330  df-in 3332  df-ss 3339  df-pss 3341  df-nul 3635  df-if 3789  df-pw 3859  df-sn 3875  df-pr 3877  df-tp 3879  df-op 3881  df-uni 4089  df-int 4126  df-iun 4170  df-br 4290  df-opab 4348  df-mpt 4349  df-tr 4383  df-eprel 4628  df-id 4632  df-po 4637  df-so 4638  df-fr 4675  df-we 4677  df-ord 4718  df-on 4719  df-lim 4720  df-suc 4721  df-xp 4842  df-rel 4843  df-cnv 4844  df-co 4845  df-dm 4846  df-rn 4847  df-res 4848  df-ima 4849  df-iota 5378  df-fun 5417  df-fn 5418  df-f 5419  df-f1 5420  df-fo 5421  df-f1o 5422  df-fv 5423  df-riota 6049  df-ov 6093  df-oprab 6094  df-mpt2 6095  df-of 6319  df-om 6476  df-1st 6576  df-2nd 6577  df-recs 6828  df-rdg 6862  df-1o 6916  df-oadd 6920  df-er 7097  df-map 7212  df-ixp 7260  df-en 7307  df-dom 7308  df-sdom 7309  df-fin 7310  df-sup 7687  df-pnf 9416  df-mnf 9417  df-xr 9418  df-ltxr 9419  df-le 9420  df-sub 9593  df-neg 9594  df-nn 10319  df-2 10376  df-3 10377  df-4 10378  df-5 10379  df-6 10380  df-7 10381  df-8 10382  df-9 10383  df-10 10384  df-n0 10576  df-z 10643  df-dec 10752  df-uz 10858  df-fz 11434  df-struct 14172  df-ndx 14173  df-slot 14174  df-base 14175  df-sets 14176  df-ress 14177  df-plusg 14247  df-mulr 14248  df-sca 14250  df-vsca 14251  df-ip 14252  df-tset 14253  df-ple 14254  df-ds 14256  df-hom 14258  df-cco 14259  df-0g 14376  df-prds 14382  df-pws 14384  df-mnd 15411  df-submnd 15461  df-grp 15538  df-minusg 15539  df-sbg 15540  df-subg 15671  df-ghm 15738  df-cntz 15828  df-lsm 16128  df-cmn 16272  df-abl 16273  df-mgp 16582  df-ur 16594  df-rng 16637  df-lmod 16930  df-lss 16992  df-lsp 17031  df-lmhm 17081  df-lmim 17082  df-lmic 17083  df-lfig 29346  df-lnm 29354
This theorem is referenced by:  pwslnm  29372
  Copyright terms: Public domain W3C validator