MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pwsinvg Structured version   Unicode version

Theorem pwsinvg 16506
Description: Negation in a group power. (Contributed by Mario Carneiro, 11-Jan-2015.)
Hypotheses
Ref Expression
pwsgrp.y  |-  Y  =  ( R  ^s  I )
pwsinvg.b  |-  B  =  ( Base `  Y
)
pwsinvg.m  |-  M  =  ( invg `  R )
pwsinvg.n  |-  N  =  ( invg `  Y )
Assertion
Ref Expression
pwsinvg  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( M  o.  X ) )

Proof of Theorem pwsinvg
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2402 . . . 4  |-  ( (Scalar `  R ) X_s ( I  X.  { R } ) )  =  ( (Scalar `  R
) X_s ( I  X.  { R } ) )
2 simp2 998 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  I  e.  V )
3 fvex 5859 . . . . 5  |-  (Scalar `  R )  e.  _V
43a1i 11 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  (Scalar `  R )  e.  _V )
5 simp1 997 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  R  e.  Grp )
6 fconst6g 5757 . . . . 5  |-  ( R  e.  Grp  ->  (
I  X.  { R } ) : I --> Grp )
75, 6syl 17 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( I  X.  { R } ) : I --> Grp )
8 eqid 2402 . . . 4  |-  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )  =  ( Base `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) )
9 eqid 2402 . . . 4  |-  ( invg `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )  =  ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) )
10 simp3 999 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  e.  B )
11 pwsinvg.b . . . . . 6  |-  B  =  ( Base `  Y
)
12 pwsgrp.y . . . . . . . . 9  |-  Y  =  ( R  ^s  I )
13 eqid 2402 . . . . . . . . 9  |-  (Scalar `  R )  =  (Scalar `  R )
1412, 13pwsval 15100 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  I  e.  V )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
15143adant3 1017 . . . . . . 7  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  Y  =  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) )
1615fveq2d 5853 . . . . . 6  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( Base `  Y
)  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1711, 16syl5eq 2455 . . . . 5  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  B  =  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
1810, 17eleqtrd 2492 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  e.  ( Base `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) )
191, 2, 4, 7, 8, 9, 18prdsinvgd 16504 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) `
 X )  =  ( x  e.  I  |->  ( ( invg `  ( ( I  X.  { R } ) `  x ) ) `  ( X `  x ) ) ) )
20 fvconst2g 6105 . . . . . . . 8  |-  ( ( R  e.  Grp  /\  x  e.  I )  ->  ( ( I  X.  { R } ) `  x )  =  R )
215, 20sylan 469 . . . . . . 7  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( (
I  X.  { R } ) `  x
)  =  R )
2221fveq2d 5853 . . . . . 6  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( invg `  ( (
I  X.  { R } ) `  x
) )  =  ( invg `  R
) )
23 pwsinvg.m . . . . . 6  |-  M  =  ( invg `  R )
2422, 23syl6eqr 2461 . . . . 5  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( invg `  ( (
I  X.  { R } ) `  x
) )  =  M )
2524fveq1d 5851 . . . 4  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( ( invg `  ( ( I  X.  { R } ) `  x
) ) `  ( X `  x )
)  =  ( M `
 ( X `  x ) ) )
2625mpteq2dva 4481 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( x  e.  I  |->  ( ( invg `  ( ( I  X.  { R } ) `  x ) ) `  ( X `  x ) ) )  =  ( x  e.  I  |->  ( M `  ( X `
 x ) ) ) )
2719, 26eqtrd 2443 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( ( invg `  ( (Scalar `  R
) X_s ( I  X.  { R } ) ) ) `
 X )  =  ( x  e.  I  |->  ( M `  ( X `  x )
) ) )
28 pwsinvg.n . . . 4  |-  N  =  ( invg `  Y )
2915fveq2d 5853 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( invg `  Y )  =  ( invg `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3028, 29syl5eq 2455 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  N  =  ( invg `  ( (Scalar `  R ) X_s ( I  X.  { R } ) ) ) )
3130fveq1d 5851 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( ( invg `  (
(Scalar `  R ) X_s ( I  X.  { R } ) ) ) `
 X ) )
32 eqid 2402 . . . . 5  |-  ( Base `  R )  =  (
Base `  R )
3312, 32, 11, 5, 2, 10pwselbas 15103 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X : I --> ( Base `  R ) )
3433ffvelrnda 6009 . . 3  |-  ( ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  /\  x  e.  I
)  ->  ( X `  x )  e.  (
Base `  R )
)
3533feqmptd 5902 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  X  =  ( x  e.  I  |->  ( X `
 x ) ) )
3632, 23grpinvf 16418 . . . . 5  |-  ( R  e.  Grp  ->  M : ( Base `  R
) --> ( Base `  R
) )
375, 36syl 17 . . . 4  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  M : ( Base `  R ) --> ( Base `  R ) )
3837feqmptd 5902 . . 3  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  M  =  ( y  e.  ( Base `  R
)  |->  ( M `  y ) ) )
39 fveq2 5849 . . 3  |-  ( y  =  ( X `  x )  ->  ( M `  y )  =  ( M `  ( X `  x ) ) )
4034, 35, 38, 39fmptco 6043 . 2  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( M  o.  X
)  =  ( x  e.  I  |->  ( M `
 ( X `  x ) ) ) )
4127, 31, 403eqtr4d 2453 1  |-  ( ( R  e.  Grp  /\  I  e.  V  /\  X  e.  B )  ->  ( N `  X
)  =  ( M  o.  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 367    /\ w3a 974    = wceq 1405    e. wcel 1842   _Vcvv 3059   {csn 3972    |-> cmpt 4453    X. cxp 4821    o. ccom 4827   -->wf 5565   ` cfv 5569  (class class class)co 6278   Basecbs 14841  Scalarcsca 14912   X_scprds 15060    ^s cpws 15061   Grpcgrp 16377   invgcminusg 16378
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1639  ax-4 1652  ax-5 1725  ax-6 1771  ax-7 1814  ax-8 1844  ax-9 1846  ax-10 1861  ax-11 1866  ax-12 1878  ax-13 2026  ax-ext 2380  ax-rep 4507  ax-sep 4517  ax-nul 4525  ax-pow 4572  ax-pr 4630  ax-un 6574  ax-cnex 9578  ax-resscn 9579  ax-1cn 9580  ax-icn 9581  ax-addcl 9582  ax-addrcl 9583  ax-mulcl 9584  ax-mulrcl 9585  ax-mulcom 9586  ax-addass 9587  ax-mulass 9588  ax-distr 9589  ax-i2m1 9590  ax-1ne0 9591  ax-1rid 9592  ax-rnegex 9593  ax-rrecex 9594  ax-cnre 9595  ax-pre-lttri 9596  ax-pre-lttrn 9597  ax-pre-ltadd 9598  ax-pre-mulgt0 9599
This theorem depends on definitions:  df-bi 185  df-or 368  df-an 369  df-3or 975  df-3an 976  df-tru 1408  df-ex 1634  df-nf 1638  df-sb 1764  df-eu 2242  df-mo 2243  df-clab 2388  df-cleq 2394  df-clel 2397  df-nfc 2552  df-ne 2600  df-nel 2601  df-ral 2759  df-rex 2760  df-reu 2761  df-rmo 2762  df-rab 2763  df-v 3061  df-sbc 3278  df-csb 3374  df-dif 3417  df-un 3419  df-in 3421  df-ss 3428  df-pss 3430  df-nul 3739  df-if 3886  df-pw 3957  df-sn 3973  df-pr 3975  df-tp 3977  df-op 3979  df-uni 4192  df-int 4228  df-iun 4273  df-br 4396  df-opab 4454  df-mpt 4455  df-tr 4490  df-eprel 4734  df-id 4738  df-po 4744  df-so 4745  df-fr 4782  df-we 4784  df-xp 4829  df-rel 4830  df-cnv 4831  df-co 4832  df-dm 4833  df-rn 4834  df-res 4835  df-ima 4836  df-pred 5367  df-ord 5413  df-on 5414  df-lim 5415  df-suc 5416  df-iota 5533  df-fun 5571  df-fn 5572  df-f 5573  df-f1 5574  df-fo 5575  df-f1o 5576  df-fv 5577  df-riota 6240  df-ov 6281  df-oprab 6282  df-mpt2 6283  df-om 6684  df-1st 6784  df-2nd 6785  df-wrecs 7013  df-recs 7075  df-rdg 7113  df-1o 7167  df-oadd 7171  df-er 7348  df-map 7459  df-ixp 7508  df-en 7555  df-dom 7556  df-sdom 7557  df-fin 7558  df-sup 7935  df-pnf 9660  df-mnf 9661  df-xr 9662  df-ltxr 9663  df-le 9664  df-sub 9843  df-neg 9844  df-nn 10577  df-2 10635  df-3 10636  df-4 10637  df-5 10638  df-6 10639  df-7 10640  df-8 10641  df-9 10642  df-10 10643  df-n0 10837  df-z 10906  df-dec 11020  df-uz 11128  df-fz 11727  df-struct 14843  df-ndx 14844  df-slot 14845  df-base 14846  df-plusg 14922  df-mulr 14923  df-sca 14925  df-vsca 14926  df-ip 14927  df-tset 14928  df-ple 14929  df-ds 14931  df-hom 14933  df-cco 14934  df-0g 15056  df-prds 15062  df-pws 15064  df-mgm 16196  df-sgrp 16235  df-mnd 16245  df-grp 16381  df-minusg 16382
This theorem is referenced by:  pwssub  16507
  Copyright terms: Public domain W3C validator